YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Front and Side View Image Correlation Measurements on FRP to Concrete Pull-Off Bond Tests

    Source: Journal of Composites for Construction:;2010:;Volume ( 014 ):;issue: 004
    Author:
    Christoph Czaderski
    ,
    Khaled Soudki
    ,
    Masoud Motavalli
    DOI: 10.1061/(ASCE)CC.1943-5614.0000106
    Publisher: American Society of Civil Engineers
    Abstract: Understanding the transfer of force by bond between externally bonded fiber-reinforced polymer (FRP) reinforcement and concrete is an important step in formulating good models for predicting debonding failures observed in externally bonded reinforcement strengthened systems. In this paper, a 3D optical displacement measurement system was used to capture the full-field displacements from the front and side view in pull-off bond specimens. The experiments were carried using six specimens with carbon FRP (CFRP) strips having different axial stiffnesses but a constant bond length to the concrete substrate. Using the optical measurements, it was possible to obtain the in-plane displacement or slip and the out-of-plane displacement or separation between the CFRP strip and the concrete. It was demonstrated, that the usual assumption of pure shear stresses in such pull-off tests is not true and that the bond behavior is a two-dimensional problem involving shear and peeling stresses. The bond behavior in CFRP strip to concrete pull-off tests was characterized by three stages: (1) the initiation of the first crack; (2) the initiation of debonding; and (3) failure by complete debonding. Based on the test results it was found that there was a dependency between the maximum bond shear stress, the maximum fracture energy of the FRP-concrete interface, and the stiffness of the FRP. However, the slip values after initiation of debonding (Stage 2) were independent of the FRP stiffness. The measured anchorage force and anchorage length were in good agreement with predictions from existing code equations.
    • Download: (1.585Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Front and Side View Image Correlation Measurements on FRP to Concrete Pull-Off Bond Tests

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/57222
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorChristoph Czaderski
    contributor authorKhaled Soudki
    contributor authorMasoud Motavalli
    date accessioned2017-05-08T21:36:10Z
    date available2017-05-08T21:36:10Z
    date copyrightAugust 2010
    date issued2010
    identifier other%28asce%29cc%2E1943-5614%2E0000109.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/57222
    description abstractUnderstanding the transfer of force by bond between externally bonded fiber-reinforced polymer (FRP) reinforcement and concrete is an important step in formulating good models for predicting debonding failures observed in externally bonded reinforcement strengthened systems. In this paper, a 3D optical displacement measurement system was used to capture the full-field displacements from the front and side view in pull-off bond specimens. The experiments were carried using six specimens with carbon FRP (CFRP) strips having different axial stiffnesses but a constant bond length to the concrete substrate. Using the optical measurements, it was possible to obtain the in-plane displacement or slip and the out-of-plane displacement or separation between the CFRP strip and the concrete. It was demonstrated, that the usual assumption of pure shear stresses in such pull-off tests is not true and that the bond behavior is a two-dimensional problem involving shear and peeling stresses. The bond behavior in CFRP strip to concrete pull-off tests was characterized by three stages: (1) the initiation of the first crack; (2) the initiation of debonding; and (3) failure by complete debonding. Based on the test results it was found that there was a dependency between the maximum bond shear stress, the maximum fracture energy of the FRP-concrete interface, and the stiffness of the FRP. However, the slip values after initiation of debonding (Stage 2) were independent of the FRP stiffness. The measured anchorage force and anchorage length were in good agreement with predictions from existing code equations.
    publisherAmerican Society of Civil Engineers
    titleFront and Side View Image Correlation Measurements on FRP to Concrete Pull-Off Bond Tests
    typeJournal Paper
    journal volume14
    journal issue4
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000106
    treeJournal of Composites for Construction:;2010:;Volume ( 014 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian