YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Pullout Strength Models for FRP Anchors in Uncracked Concrete

    Source: Journal of Composites for Construction:;2010:;Volume ( 014 ):;issue: 004
    Author:
    Seo Jin Kim
    ,
    Scott T. Smith
    DOI: 10.1061/(ASCE)CC.1943-5614.0000097
    Publisher: American Society of Civil Engineers
    Abstract: Mechanical anchorage can delay or even prevent premature debonding failure in externally bonded fiber-reinforced polymer (FRP) composite strengthening systems. A promising type of anchor made from FRP, which is known as a FRP spike anchor or FRP anchor among other names, is noncorrosive and can be applied to a wide range of structural elements and externally bonded FRP strengthening schemes. Experimental investigations have shown FRP anchors to be effective under tension (pullout) and shear loading, however, few analytical models exist to date. This paper in turn presents analytical models to quantify the pullout strength of FRP anchors. As existing research on the pullout behavior of metallic anchors is partially relevant to FRP anchors, this paper first presents a review of current pullout strength models for metallic anchors. These models are then assessed with experimental data of FRP anchors and modified and recalibrated where appropriate. As a result, simple and rational pullout strength models for FRP anchors are proposed which can also be used in design. Finally, parametric studies are undertaken and the influence of key variables is identified.
    • Download: (1.037Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Pullout Strength Models for FRP Anchors in Uncracked Concrete

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/57213
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorSeo Jin Kim
    contributor authorScott T. Smith
    date accessioned2017-05-08T21:36:09Z
    date available2017-05-08T21:36:09Z
    date copyrightAugust 2010
    date issued2010
    identifier other%28asce%29cc%2E1943-5614%2E0000100.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/57213
    description abstractMechanical anchorage can delay or even prevent premature debonding failure in externally bonded fiber-reinforced polymer (FRP) composite strengthening systems. A promising type of anchor made from FRP, which is known as a FRP spike anchor or FRP anchor among other names, is noncorrosive and can be applied to a wide range of structural elements and externally bonded FRP strengthening schemes. Experimental investigations have shown FRP anchors to be effective under tension (pullout) and shear loading, however, few analytical models exist to date. This paper in turn presents analytical models to quantify the pullout strength of FRP anchors. As existing research on the pullout behavior of metallic anchors is partially relevant to FRP anchors, this paper first presents a review of current pullout strength models for metallic anchors. These models are then assessed with experimental data of FRP anchors and modified and recalibrated where appropriate. As a result, simple and rational pullout strength models for FRP anchors are proposed which can also be used in design. Finally, parametric studies are undertaken and the influence of key variables is identified.
    publisherAmerican Society of Civil Engineers
    titlePullout Strength Models for FRP Anchors in Uncracked Concrete
    typeJournal Paper
    journal volume14
    journal issue4
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000097
    treeJournal of Composites for Construction:;2010:;Volume ( 014 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian