YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Predicting the Earth Pressure on Integral Bridge Abutments

    Source: Journal of Bridge Engineering:;2012:;Volume ( 017 ):;issue: 002
    Author:
    Alan G. Bloodworth
    ,
    Ming Xu
    ,
    James R. Banks
    ,
    Chris R. I. Clayton
    DOI: 10.1061/(ASCE)BE.1943-5592.0000263
    Publisher: American Society of Civil Engineers
    Abstract: The soil adjacent to integral bridge abutments experiences daily and annual temperature-induced cyclic loading owing to expansion and contraction of the bridge deck. This causes a particular soil response and complicated soil-structure interaction problem, with considerable uncertainties in design. This paper describes a method of calculating the effects of thermal cycling by using the results of laboratory cyclic stress-path testing within a numerical model. Samples of stiff clay and sand were tested in the triaxial apparatus under stress paths that are typical behind an integral abutment. Distinct behavior was observed for the two soils, with stiff clay showing relatively little buildup of lateral stress with cycles, whereas sand stresses continued to increase, exceeding at-rest pressure and approaching full passive pressures. To explore the implications of these findings on soil-abutment interaction and to estimate the lateral stresses acting on the abutment as a whole, a numerical i.e., (finite difference) model was developed with a soil model reproducing the sand behavior at element level. The numerical model gave good agreement with published centrifuge and field data, indicating that the stress profile specified in some current standards is conservative. The influence of abutment stiffness and wall friction is also quantified.
    • Download: (760.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Predicting the Earth Pressure on Integral Bridge Abutments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/56804
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorAlan G. Bloodworth
    contributor authorMing Xu
    contributor authorJames R. Banks
    contributor authorChris R. I. Clayton
    date accessioned2017-05-08T21:35:13Z
    date available2017-05-08T21:35:13Z
    date copyrightMarch 2012
    date issued2012
    identifier other%28asce%29be%2E1943-5592%2E0000265.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/56804
    description abstractThe soil adjacent to integral bridge abutments experiences daily and annual temperature-induced cyclic loading owing to expansion and contraction of the bridge deck. This causes a particular soil response and complicated soil-structure interaction problem, with considerable uncertainties in design. This paper describes a method of calculating the effects of thermal cycling by using the results of laboratory cyclic stress-path testing within a numerical model. Samples of stiff clay and sand were tested in the triaxial apparatus under stress paths that are typical behind an integral abutment. Distinct behavior was observed for the two soils, with stiff clay showing relatively little buildup of lateral stress with cycles, whereas sand stresses continued to increase, exceeding at-rest pressure and approaching full passive pressures. To explore the implications of these findings on soil-abutment interaction and to estimate the lateral stresses acting on the abutment as a whole, a numerical i.e., (finite difference) model was developed with a soil model reproducing the sand behavior at element level. The numerical model gave good agreement with published centrifuge and field data, indicating that the stress profile specified in some current standards is conservative. The influence of abutment stiffness and wall friction is also quantified.
    publisherAmerican Society of Civil Engineers
    titlePredicting the Earth Pressure on Integral Bridge Abutments
    typeJournal Paper
    journal volume17
    journal issue2
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0000263
    treeJournal of Bridge Engineering:;2012:;Volume ( 017 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian