YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamic Analysis of the Bentley Creek Bridge with FRP Deck

    Source: Journal of Bridge Engineering:;2012:;Volume ( 017 ):;issue: 002
    Author:
    Osman Hag-Elsafi
    ,
    William F. Albers
    ,
    Sreenivas Alampalli
    DOI: 10.1061/(ASCE)BE.1943-5592.0000244
    Publisher: American Society of Civil Engineers
    Abstract: This study investigates vibration characteristics of a truss bridge that has been retrofitted with a fiber reinforced polymer (FRP) deck. The bridge is located on State Route 367 in Wellsburg, Chemung County, New York. It is a 140-ft-long (approximately 42.7-m-long) truss structure, originally built with a noncomposite concrete deck. The concrete deck was replaced with a much lighter fiber reinforced polymer deck to improve the bridge load capacity ratings. This study investigates the vibration characteristics of the bridge as a result of the deck replacement and impact of these changes on the structural behavior. The results indicate that the fundamental frequency for the current structure with the FRP deck is approximately 45% higher than that for the original structure with a concrete deck. The computed bridge fundamental frequency correlated well with field data. When compared to the concrete deck bridge, the FRP deck bridge resulted in lower dead load forces, higher live load forces, lower total forces, and higher live load stress ranges used in fatigue life estimates. Dynamic allowance was also determined for each of the selected members for both concrete and FRP decks. For the concrete deck bridge, the calculated dynamic allowance is higher than those used in bridge design specifications. Lower dynamic allowances were obtained for the FRP deck bridge.
    • Download: (1.896Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamic Analysis of the Bentley Creek Bridge with FRP Deck

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/56783
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorOsman Hag-Elsafi
    contributor authorWilliam F. Albers
    contributor authorSreenivas Alampalli
    date accessioned2017-05-08T21:35:10Z
    date available2017-05-08T21:35:10Z
    date copyrightMarch 2012
    date issued2012
    identifier other%28asce%29be%2E1943-5592%2E0000246.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/56783
    description abstractThis study investigates vibration characteristics of a truss bridge that has been retrofitted with a fiber reinforced polymer (FRP) deck. The bridge is located on State Route 367 in Wellsburg, Chemung County, New York. It is a 140-ft-long (approximately 42.7-m-long) truss structure, originally built with a noncomposite concrete deck. The concrete deck was replaced with a much lighter fiber reinforced polymer deck to improve the bridge load capacity ratings. This study investigates the vibration characteristics of the bridge as a result of the deck replacement and impact of these changes on the structural behavior. The results indicate that the fundamental frequency for the current structure with the FRP deck is approximately 45% higher than that for the original structure with a concrete deck. The computed bridge fundamental frequency correlated well with field data. When compared to the concrete deck bridge, the FRP deck bridge resulted in lower dead load forces, higher live load forces, lower total forces, and higher live load stress ranges used in fatigue life estimates. Dynamic allowance was also determined for each of the selected members for both concrete and FRP decks. For the concrete deck bridge, the calculated dynamic allowance is higher than those used in bridge design specifications. Lower dynamic allowances were obtained for the FRP deck bridge.
    publisherAmerican Society of Civil Engineers
    titleDynamic Analysis of the Bentley Creek Bridge with FRP Deck
    typeJournal Paper
    journal volume17
    journal issue2
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0000244
    treeJournal of Bridge Engineering:;2012:;Volume ( 017 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian