YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Seismic Fragility of Multispan Simply Supported Steel Highway Bridges in New York State. I: Bridge Modeling, Parametric Analysis, and Retrofit Design

    Source: Journal of Bridge Engineering:;2010:;Volume ( 015 ):;issue: 005
    Author:
    Y. Pan
    ,
    A. K. Agrawal
    ,
    M. Ghosn
    ,
    S. Alampalli
    DOI: 10.1061/(ASCE)BE.1943-5592.0000085
    Publisher: American Society of Civil Engineers
    Abstract: This paper studies the dynamic seismic behavior of a typical highway bridge in New York State. The topological layout and structural details of this multispan simply supported steel-girder bridge are identified as the most typical of the New York State Department of Transportation bridge inventory database. Three-dimensional finite-element models of the bridge are established considering the nonlinear behavior of critical bridge components. An in-depth parametric study is carried out to evaluate the sensitivity of the bridge’s seismic response to variations in its structural parameters. The parametric analysis determined that uncertainties associated with the steel reinforcement’s yield strength, the superstructure’s weight, the expansion joints’ gap size, the friction coefficient of expansion bearings, and the concrete compressive strength should be considered during the fragility analysis of the bridge system. The Latin hypercube sampling (LHS) approach is used to obtain representative samples for the fragility analysis based on the mean values and probability distributions of each critical random variable. The LHS is thus used to create a set of nominally identical but statistically different bridge samples for performing the fragility analysis. The individual bridges from this statistically representative set are matched with earthquake samples of various intensities for the nonlinear seismic demand analysis. The seismic capacity of critical bridge components are estimated for each bridge sample from published experimental data. Through extensive numerical simulations, the sensitivity analysis identified the most vulnerable bridge components. Two seismic retrofit strategies for reducing the seismic risk of multispan simply supported steel bridges are studied: (i) steel bearing replacement by elastomeric bearings and (ii) deck/girder-splicing (continuity) with steel bearing replacement by elastomeric bearings. The analysis verified that retrofit option ii is the most effective. The finite-element model of the bridge samples, along with the assembled data on parameter uncertainties and member capacities, as well as a simulated set of ground motion records are suitable for use during the development of fragility curves for bridges with and without retrofit. Detailed description of the fragility analysis is presented in the companion paper.
    • Download: (1.292Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Seismic Fragility of Multispan Simply Supported Steel Highway Bridges in New York State. I: Bridge Modeling, Parametric Analysis, and Retrofit Design

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/56612
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorY. Pan
    contributor authorA. K. Agrawal
    contributor authorM. Ghosn
    contributor authorS. Alampalli
    date accessioned2017-05-08T21:34:50Z
    date available2017-05-08T21:34:50Z
    date copyrightSeptember 2010
    date issued2010
    identifier other%28asce%29be%2E1943-5592%2E0000087.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/56612
    description abstractThis paper studies the dynamic seismic behavior of a typical highway bridge in New York State. The topological layout and structural details of this multispan simply supported steel-girder bridge are identified as the most typical of the New York State Department of Transportation bridge inventory database. Three-dimensional finite-element models of the bridge are established considering the nonlinear behavior of critical bridge components. An in-depth parametric study is carried out to evaluate the sensitivity of the bridge’s seismic response to variations in its structural parameters. The parametric analysis determined that uncertainties associated with the steel reinforcement’s yield strength, the superstructure’s weight, the expansion joints’ gap size, the friction coefficient of expansion bearings, and the concrete compressive strength should be considered during the fragility analysis of the bridge system. The Latin hypercube sampling (LHS) approach is used to obtain representative samples for the fragility analysis based on the mean values and probability distributions of each critical random variable. The LHS is thus used to create a set of nominally identical but statistically different bridge samples for performing the fragility analysis. The individual bridges from this statistically representative set are matched with earthquake samples of various intensities for the nonlinear seismic demand analysis. The seismic capacity of critical bridge components are estimated for each bridge sample from published experimental data. Through extensive numerical simulations, the sensitivity analysis identified the most vulnerable bridge components. Two seismic retrofit strategies for reducing the seismic risk of multispan simply supported steel bridges are studied: (i) steel bearing replacement by elastomeric bearings and (ii) deck/girder-splicing (continuity) with steel bearing replacement by elastomeric bearings. The analysis verified that retrofit option ii is the most effective. The finite-element model of the bridge samples, along with the assembled data on parameter uncertainties and member capacities, as well as a simulated set of ground motion records are suitable for use during the development of fragility curves for bridges with and without retrofit. Detailed description of the fragility analysis is presented in the companion paper.
    publisherAmerican Society of Civil Engineers
    titleSeismic Fragility of Multispan Simply Supported Steel Highway Bridges in New York State. I: Bridge Modeling, Parametric Analysis, and Retrofit Design
    typeJournal Paper
    journal volume15
    journal issue5
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0000085
    treeJournal of Bridge Engineering:;2010:;Volume ( 015 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian