YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    IFF Optimal Control for Missile Formation Reconfiguration in Cooperative Engagement

    Source: Journal of Aerospace Engineering:;2015:;Volume ( 028 ):;issue: 003
    Author:
    Changzhu Wei
    ,
    Jifeng Guo
    ,
    Sang-Young Park
    ,
    Jiangtao Xu
    ,
    Xiaoxiao Ma
    DOI: 10.1061/(ASCE)AS.1943-5525.0000359
    Publisher: American Society of Civil Engineers
    Abstract: In this paper, an integral feedback and feed-forward (IFF) optimal controller with hard terminal constraints for missile formation reconfiguration is designed. The controller has quadric optimal performance for expected terminal errors, output, and control quantity. From the viewpoint of the kinematics relationship of a formation in the relative coordinate frame, the authors establish a precisely linearized relative motion model by transforming the control variables. This relative motion model can intuitively manifest the relationship of the relative motion in three directions in the relative coordinate frame. In order to solve the designed IFF optimal controller, detailed deductions for deriving the related Lagrange parameters are presented. A precise integration algorithm was adopted instead of using a traditional backward integration algorithm to calculate more precise solutions for the relevant parameters in the IFF optimal controller. A collision avoidance system with four spherical domains was proposed, and a modifying principle to avoid collision during formation reconfiguration was presented. Simulation results demonstrate that the presented IFF optimal controller is capable of implementing missile formation reconfiguration rapidly, stably, and accurately. It can additionally restrain invariant or slowly varying perturbations induced by the velocity of a leader missile. Furthermore, the collision avoidance system developed in this paper can enable missiles to avoid collision during formation reconfiguration.
    • Download: (3.247Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      IFF Optimal Control for Missile Formation Reconfiguration in Cooperative Engagement

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/56505
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorChangzhu Wei
    contributor authorJifeng Guo
    contributor authorSang-Young Park
    contributor authorJiangtao Xu
    contributor authorXiaoxiao Ma
    date accessioned2017-05-08T21:34:30Z
    date available2017-05-08T21:34:30Z
    date copyrightMay 2015
    date issued2015
    identifier other%28asce%29as%2E1943-5525%2E0000362.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/56505
    description abstractIn this paper, an integral feedback and feed-forward (IFF) optimal controller with hard terminal constraints for missile formation reconfiguration is designed. The controller has quadric optimal performance for expected terminal errors, output, and control quantity. From the viewpoint of the kinematics relationship of a formation in the relative coordinate frame, the authors establish a precisely linearized relative motion model by transforming the control variables. This relative motion model can intuitively manifest the relationship of the relative motion in three directions in the relative coordinate frame. In order to solve the designed IFF optimal controller, detailed deductions for deriving the related Lagrange parameters are presented. A precise integration algorithm was adopted instead of using a traditional backward integration algorithm to calculate more precise solutions for the relevant parameters in the IFF optimal controller. A collision avoidance system with four spherical domains was proposed, and a modifying principle to avoid collision during formation reconfiguration was presented. Simulation results demonstrate that the presented IFF optimal controller is capable of implementing missile formation reconfiguration rapidly, stably, and accurately. It can additionally restrain invariant or slowly varying perturbations induced by the velocity of a leader missile. Furthermore, the collision avoidance system developed in this paper can enable missiles to avoid collision during formation reconfiguration.
    publisherAmerican Society of Civil Engineers
    titleIFF Optimal Control for Missile Formation Reconfiguration in Cooperative Engagement
    typeJournal Paper
    journal volume28
    journal issue3
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0000359
    treeJournal of Aerospace Engineering:;2015:;Volume ( 028 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian