| contributor author | M. Mustafa | |
| contributor author | M. Nawaz | |
| contributor author | T. Hayat | |
| contributor author | A. Alsaedi | |
| date accessioned | 2017-05-08T21:34:18Z | |
| date available | 2017-05-08T21:34:18Z | |
| date copyright | July 2014 | |
| date issued | 2014 | |
| identifier other | %28asce%29as%2E1943-5525%2E0000316.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/56466 | |
| description abstract | This paper focuses on the magnetohydrodynamic (MHD) boundary layer flow and heat transfer of a non-Newtonian nanofluid over a stretching sheet. The presence of Brownian motion and thermophoresis effects lead to a coupled nonlinear boundary value problem. Convective boundary conditions have been handled for the thermal boundary layer problem. Similarity transformations have been invoked to reduce the arising partial differential equations into ordinary ones. Series expressions of velocity, temperature, and nanoparticles concentration are obtained by homotopy analysis method (HAM). The homotopy solutions are validated with the obtained numerical solutions. It is noticed that velocity and the boundary layer thickness are increasing functions of the non-Newtonian (elastic) parameter for second grade fluid. However, the thermal and nanoparticles concentration boundary layers thin when the viscoelastic effects strengthen. Moreover, there is an appreciable increase in the temperature and the thermal boundary thickness when the strength of Brownian motion and thermophoresis effects are increased. | |
| publisher | American Society of Civil Engineers | |
| title | MHD Boundary Layer Flow of Second-Grade Nanofluid over a Stretching Sheet with Convective Boundary Conditions | |
| type | Journal Paper | |
| journal volume | 27 | |
| journal issue | 4 | |
| journal title | Journal of Aerospace Engineering | |
| identifier doi | 10.1061/(ASCE)AS.1943-5525.0000314 | |
| tree | Journal of Aerospace Engineering:;2014:;Volume ( 027 ):;issue: 004 | |
| contenttype | Fulltext | |