YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Robust Position and Attitude Control for Spacecraft Formation Flying

    Source: Journal of Aerospace Engineering:;2012:;Volume ( 025 ):;issue: 003
    Author:
    Daero Lee
    ,
    John E. Cochran Jr.
    ,
    Tae Soo No
    DOI: 10.1061/(ASCE)AS.1943-5525.0000146
    Publisher: American Society of Civil Engineers
    Abstract: An integrated approach combining a state-dependent Ricatti equation (SDRE) and an extended Kalman filter (EKF) is applied to spacecraft formation flying for robust orbital and attitude maneuvers. The formation flying considered in this study is a two-spacecraft formation with a bounded out-of-orbit plane relative motion. The chaser is required to simultaneously perform large position and angle maneuvers with sufficient accuracy. The chaser is then required to maintain a relative orbit expressed in the local-vertical-local-horizontal frame with respect to the target and align its attitude with the target attitude for more than one orbital period. The controls of the chaser are formulated as a nonlinear optimal regulator problem using their highly nonlinear dynamics. To test the robustness of this integrated approach, highly nonlinear dynamics, including external disturbances, are employed as the truth plant that is then used to generate the measurements for an EKF. The tracking error is then computed between the true plant and the desired state. A six degrees-of-freedom simulation of a two-spacecraft flying formation is used to demonstrate the robustness of this integrated approach to external disturbances and plant uncertainties. The integrated approach also has an effect well under the large uncertainty of the chaser moment of inertia.
    • Download: (1.040Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Robust Position and Attitude Control for Spacecraft Formation Flying

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/56292
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorDaero Lee
    contributor authorJohn E. Cochran Jr.
    contributor authorTae Soo No
    date accessioned2017-05-08T21:33:52Z
    date available2017-05-08T21:33:52Z
    date copyrightJuly 2012
    date issued2012
    identifier other%28asce%29as%2E1943-5525%2E0000146.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/56292
    description abstractAn integrated approach combining a state-dependent Ricatti equation (SDRE) and an extended Kalman filter (EKF) is applied to spacecraft formation flying for robust orbital and attitude maneuvers. The formation flying considered in this study is a two-spacecraft formation with a bounded out-of-orbit plane relative motion. The chaser is required to simultaneously perform large position and angle maneuvers with sufficient accuracy. The chaser is then required to maintain a relative orbit expressed in the local-vertical-local-horizontal frame with respect to the target and align its attitude with the target attitude for more than one orbital period. The controls of the chaser are formulated as a nonlinear optimal regulator problem using their highly nonlinear dynamics. To test the robustness of this integrated approach, highly nonlinear dynamics, including external disturbances, are employed as the truth plant that is then used to generate the measurements for an EKF. The tracking error is then computed between the true plant and the desired state. A six degrees-of-freedom simulation of a two-spacecraft flying formation is used to demonstrate the robustness of this integrated approach to external disturbances and plant uncertainties. The integrated approach also has an effect well under the large uncertainty of the chaser moment of inertia.
    publisherAmerican Society of Civil Engineers
    titleRobust Position and Attitude Control for Spacecraft Formation Flying
    typeJournal Paper
    journal volume25
    journal issue3
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0000146
    treeJournal of Aerospace Engineering:;2012:;Volume ( 025 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian