YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Air Cooling of a Two-Seater Fuel Cell–Powered Aircraft: Dynamic Modeling and Comparison with Experimental Data

    Source: Journal of Aerospace Engineering:;2012:;Volume ( 025 ):;issue: 003
    Author:
    G. Romeo
    ,
    G. Correa
    ,
    F. Borello
    ,
    E. Cestino
    ,
    M. Santarelli
    DOI: 10.1061/(ASCE)AS.1943-5525.0000138
    Publisher: American Society of Civil Engineers
    Abstract: The application of fuel cell (FC) technology to aircraft propulsion and/or energy supply is becoming of great interest for undoubted advantages in terms of pollution emissions and noise reduction. A better understanding of problems related to fuel cells applied to aeronautics is sought by the European Commission (EC) funded project Environmentally Friendly Inter-City Aircraft Powered by Fuel Cells (ENFICA-FC). The main objective of the ENFICA-FC project was to develop and validate the use of a fuel cell–based power system for the propulsion of more-electric/all-electric aircraft. The fuel cell system was installed in the light sport aircraft Rapid 200, which was flight and performance tested. One of the key items under investigation is the simulation of the cooling system and the evaluation of fuel cell temperature. The polymer electrolyte membrane fuel cell (PEMFC) is considered to be the best candidate for the fuel cell vehicle because it has high power density, solid membrane electrolyte, and as it operates at low temperatures, it has a fast start-up. However, to generate a reliable and efficient power response and to prevent membrane degradation or damage with hydrogen and oxygen depletion, a sophisticated control technique becomes vitally important. In particular, as the ionic conduction of the polymeric membrane is a function of its degree of humidification, the stack temperature has to be carefully controlled to avoid phenomena of water evaporation, causing an increase of ohmic drop and a decrease of stack performances. The output voltage and hence the power of the fuel cell system is affected considerably by the change of the stack temperature. A simplified fluid-dynamic model has been developed and validated by computational fluid dynamics (CFD) analysis and it is used to compute the air flow to the fuel cell heat-exchanger inlet. Propeller effects are included referring to an optimal propeller specifically designed for the ENFICA-FC project. A mathematical model of the fuel cell system dynamics coupled with the fluid-dynamic model was studied in detail and experimentally validated during two flight tests of the Rapid 200-FC.
    • Download: (3.375Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Air Cooling of a Two-Seater Fuel Cell–Powered Aircraft: Dynamic Modeling and Comparison with Experimental Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/56283
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorG. Romeo
    contributor authorG. Correa
    contributor authorF. Borello
    contributor authorE. Cestino
    contributor authorM. Santarelli
    date accessioned2017-05-08T21:33:52Z
    date available2017-05-08T21:33:52Z
    date copyrightJuly 2012
    date issued2012
    identifier other%28asce%29as%2E1943-5525%2E0000138.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/56283
    description abstractThe application of fuel cell (FC) technology to aircraft propulsion and/or energy supply is becoming of great interest for undoubted advantages in terms of pollution emissions and noise reduction. A better understanding of problems related to fuel cells applied to aeronautics is sought by the European Commission (EC) funded project Environmentally Friendly Inter-City Aircraft Powered by Fuel Cells (ENFICA-FC). The main objective of the ENFICA-FC project was to develop and validate the use of a fuel cell–based power system for the propulsion of more-electric/all-electric aircraft. The fuel cell system was installed in the light sport aircraft Rapid 200, which was flight and performance tested. One of the key items under investigation is the simulation of the cooling system and the evaluation of fuel cell temperature. The polymer electrolyte membrane fuel cell (PEMFC) is considered to be the best candidate for the fuel cell vehicle because it has high power density, solid membrane electrolyte, and as it operates at low temperatures, it has a fast start-up. However, to generate a reliable and efficient power response and to prevent membrane degradation or damage with hydrogen and oxygen depletion, a sophisticated control technique becomes vitally important. In particular, as the ionic conduction of the polymeric membrane is a function of its degree of humidification, the stack temperature has to be carefully controlled to avoid phenomena of water evaporation, causing an increase of ohmic drop and a decrease of stack performances. The output voltage and hence the power of the fuel cell system is affected considerably by the change of the stack temperature. A simplified fluid-dynamic model has been developed and validated by computational fluid dynamics (CFD) analysis and it is used to compute the air flow to the fuel cell heat-exchanger inlet. Propeller effects are included referring to an optimal propeller specifically designed for the ENFICA-FC project. A mathematical model of the fuel cell system dynamics coupled with the fluid-dynamic model was studied in detail and experimentally validated during two flight tests of the Rapid 200-FC.
    publisherAmerican Society of Civil Engineers
    titleAir Cooling of a Two-Seater Fuel Cell–Powered Aircraft: Dynamic Modeling and Comparison with Experimental Data
    typeJournal Paper
    journal volume25
    journal issue3
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0000138
    treeJournal of Aerospace Engineering:;2012:;Volume ( 025 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian