YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    UAS Collision Avoidance Algorithm Based on an Aggregate Collision Cone Approach

    Source: Journal of Aerospace Engineering:;2011:;Volume ( 024 ):;issue: 004
    Author:
    Austin L. Smith
    ,
    Frederick G. Harmon
    DOI: 10.1061/(ASCE)AS.1943-5525.0000081
    Publisher: American Society of Civil Engineers
    Abstract: A collision-avoidance (CA) algorithm is developed and implemented that is applicable to many different unmanned aerial systems (UAS), ranging from a single platform with the ability to perform all collision-avoidance functions independently to multiple vehicles performing functions as a cooperative group with collision-avoidance commands computed at a ground station. The algorithm leverages advances in several theoretical fields, including robotics, homing guidance, and airspace management, and considers several approaches to conflict detection and resolution, including the collision cone approach. The collision-avoidance system is exercised and tested by using operational hardware and platforms. Novel developments by using an aggregated collision cone approach allow each unmanned aircraft to detect and avoid collisions with two or more other aircraft simultaneously. The collision-avoidance system is implemented by using a miniature unmanned aircraft with an onboard autopilot. Various simulation and flight test cases are used to demonstrate the algorithm’s robustness to different collision encounters at various engagement angles. The flight test results are compared with ideal, software-in-the-loop, and hardware-in-the-loop tests. The results presented are the first known flight tests of two or more unmanned aircraft systems equipped with the same global, three-dimensional, geometric collision-avoidance system.
    • Download: (2.065Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      UAS Collision Avoidance Algorithm Based on an Aggregate Collision Cone Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/56224
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorAustin L. Smith
    contributor authorFrederick G. Harmon
    date accessioned2017-05-08T21:33:47Z
    date available2017-05-08T21:33:47Z
    date copyrightOctober 2011
    date issued2011
    identifier other%28asce%29as%2E1943-5525%2E0000081.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/56224
    description abstractA collision-avoidance (CA) algorithm is developed and implemented that is applicable to many different unmanned aerial systems (UAS), ranging from a single platform with the ability to perform all collision-avoidance functions independently to multiple vehicles performing functions as a cooperative group with collision-avoidance commands computed at a ground station. The algorithm leverages advances in several theoretical fields, including robotics, homing guidance, and airspace management, and considers several approaches to conflict detection and resolution, including the collision cone approach. The collision-avoidance system is exercised and tested by using operational hardware and platforms. Novel developments by using an aggregated collision cone approach allow each unmanned aircraft to detect and avoid collisions with two or more other aircraft simultaneously. The collision-avoidance system is implemented by using a miniature unmanned aircraft with an onboard autopilot. Various simulation and flight test cases are used to demonstrate the algorithm’s robustness to different collision encounters at various engagement angles. The flight test results are compared with ideal, software-in-the-loop, and hardware-in-the-loop tests. The results presented are the first known flight tests of two or more unmanned aircraft systems equipped with the same global, three-dimensional, geometric collision-avoidance system.
    publisherAmerican Society of Civil Engineers
    titleUAS Collision Avoidance Algorithm Based on an Aggregate Collision Cone Approach
    typeJournal Paper
    journal volume24
    journal issue4
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0000081
    treeJournal of Aerospace Engineering:;2011:;Volume ( 024 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian