YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Crack Growth Resistance of Hybrid Fiber-Reinforced Cement Matrix Composites

    Source: Journal of Aerospace Engineering:;2011:;Volume ( 024 ):;issue: 002
    Author:
    Ying Chen
    ,
    Pizhong Qiao
    DOI: 10.1061/(ASCE)AS.1943-5525.0000031
    Publisher: American Society of Civil Engineers
    Abstract: The effect of hybrid fiber reinforcement on fracture energy and crack propagation in cement matrix composites is examined. The crack in cement matrix composites is allowed to fracture under mode-I loading with three-point bending beam specimens. The influence of fiber types and their combination is quantified by using the toughness index and fracture energy. A proper hybrid combination of steel fibers and polyvinyl alcohol microfibers enhances the resistance to both the nucleation and growth of the crack. The micromechanical model of hybrid composites by using a fiber bridging law is emphasized, and the numerical model prediction closely matches the behavior obtained from the experiment. The influencing role of the material parameters in the fracture tests (e.g., the fracture toughness index and fracture energy) becomes more apparent than ones used in some conventional strength-based or fiber pullout tests, and these fracture parameters could screen the effect of fiber/microfiber reinforcement in enhancing the crack growth resistance of cementitious composites. This study demonstrates that fundamental fracture tests are effective to characterize and develop high-performance hybrid fiber–reinforced cement matrix composites.
    • Download: (719.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Crack Growth Resistance of Hybrid Fiber-Reinforced Cement Matrix Composites

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/56169
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorYing Chen
    contributor authorPizhong Qiao
    date accessioned2017-05-08T21:33:39Z
    date available2017-05-08T21:33:39Z
    date copyrightApril 2011
    date issued2011
    identifier other%28asce%29as%2E1943-5525%2E0000031.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/56169
    description abstractThe effect of hybrid fiber reinforcement on fracture energy and crack propagation in cement matrix composites is examined. The crack in cement matrix composites is allowed to fracture under mode-I loading with three-point bending beam specimens. The influence of fiber types and their combination is quantified by using the toughness index and fracture energy. A proper hybrid combination of steel fibers and polyvinyl alcohol microfibers enhances the resistance to both the nucleation and growth of the crack. The micromechanical model of hybrid composites by using a fiber bridging law is emphasized, and the numerical model prediction closely matches the behavior obtained from the experiment. The influencing role of the material parameters in the fracture tests (e.g., the fracture toughness index and fracture energy) becomes more apparent than ones used in some conventional strength-based or fiber pullout tests, and these fracture parameters could screen the effect of fiber/microfiber reinforcement in enhancing the crack growth resistance of cementitious composites. This study demonstrates that fundamental fracture tests are effective to characterize and develop high-performance hybrid fiber–reinforced cement matrix composites.
    publisherAmerican Society of Civil Engineers
    titleCrack Growth Resistance of Hybrid Fiber-Reinforced Cement Matrix Composites
    typeJournal Paper
    journal volume24
    journal issue2
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0000031
    treeJournal of Aerospace Engineering:;2011:;Volume ( 024 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian