YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Efficient Multiscale Modeling Framework for Triaxially Braided Composites using Generalized Method of Cells

    Source: Journal of Aerospace Engineering:;2011:;Volume ( 024 ):;issue: 002
    Author:
    Kuang C. Liu
    ,
    Aditi Chattopadhyay
    ,
    Brett Bednarcyk
    ,
    Steven M. Arnold
    DOI: 10.1061/(ASCE)AS.1943-5525.0000009
    Publisher: American Society of Civil Engineers
    Abstract: In this paper, a framework for a three-scale analysis, beginning at the constituent response and propagating to the braid repeating unit cell (RUC) level, is presented. At each scale in the analysis, the response of the appropriate RUC is represented by homogenized effective properties determined from the generalized method of cells micromechanics theory. Two different macroscale RUC architectures are considered, one for eventual finite-element implementation and the other for material design, and their differences are compared. Model validation is presented through comparison to both experimental data and detailed finite-element simulations. Results show good correlation within range of experimental scatter and the finite-element simulation. Results are also presented for parametric studies varying both the overall fiber volume fraction and braid angle. These studies are compared to predictions from classical lamination theory for reference. Finally, the multiscale analysis framework is used to predict the onset of failure in a transversely loaded triaxially braided composite. The predicted transverse failure initiation stress value shows excellent correlation and provides the bound for which linear elastic constitutive models are acceptable for implementation.
    • Download: (824.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Efficient Multiscale Modeling Framework for Triaxially Braided Composites using Generalized Method of Cells

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/56147
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorKuang C. Liu
    contributor authorAditi Chattopadhyay
    contributor authorBrett Bednarcyk
    contributor authorSteven M. Arnold
    date accessioned2017-05-08T21:33:36Z
    date available2017-05-08T21:33:36Z
    date copyrightApril 2011
    date issued2011
    identifier other%28asce%29as%2E1943-5525%2E0000009.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/56147
    description abstractIn this paper, a framework for a three-scale analysis, beginning at the constituent response and propagating to the braid repeating unit cell (RUC) level, is presented. At each scale in the analysis, the response of the appropriate RUC is represented by homogenized effective properties determined from the generalized method of cells micromechanics theory. Two different macroscale RUC architectures are considered, one for eventual finite-element implementation and the other for material design, and their differences are compared. Model validation is presented through comparison to both experimental data and detailed finite-element simulations. Results show good correlation within range of experimental scatter and the finite-element simulation. Results are also presented for parametric studies varying both the overall fiber volume fraction and braid angle. These studies are compared to predictions from classical lamination theory for reference. Finally, the multiscale analysis framework is used to predict the onset of failure in a transversely loaded triaxially braided composite. The predicted transverse failure initiation stress value shows excellent correlation and provides the bound for which linear elastic constitutive models are acceptable for implementation.
    publisherAmerican Society of Civil Engineers
    titleEfficient Multiscale Modeling Framework for Triaxially Braided Composites using Generalized Method of Cells
    typeJournal Paper
    journal volume24
    journal issue2
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0000009
    treeJournal of Aerospace Engineering:;2011:;Volume ( 024 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian