YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanical Behavior and Size Sensitivity of Nanocrystalline Nickel Wires Using Molecular Dynamics Simulation

    Source: Journal of Aerospace Engineering:;2011:;Volume ( 024 ):;issue: 002
    Author:
    Dan Huang
    ,
    Pizhong Qiao
    DOI: 10.1061/(ASCE)AS.1943-5525.0000006
    Publisher: American Society of Civil Engineers
    Abstract: The mechanisms of deformation and failure in face-centered cubic (FCC) nickel nanowires subjected to uniaxial tensile loading are investigated using molecular dynamics (MD) simulation, and the size effect on mechanical properties of FCC metal nanowires is studied. Simulation reveals that the surface free energy has great influence on the deformation and failure mechanism of metal nanowires. As a result of free surfaces and their reconstruction, the surface atoms depart from the perfect crystal lattice positions, leading to the appearance of nanocavities on the surfaces that are exposed to external load. The deformation process of nanowires undergoes expansion and connection of nanocavities from surface into inner lattices. Slip occurs during the deformation process, which is consistent with experimental phenomena. Elastic stiffness, yield, and fracture strength of nickel nanowires with various cross-sectional sizes are obtained, and the size effect on these mechanical properties is further analyzed. Based on numerical results, a set of quantitative prediction formulas are proposed, and they are capable of explaining the size sensitivity of nickel nanowires on the mechanical properties. Both the elastic modulus and yield strength of nickel nanowires are in a linear relationship with respect to the logarithm of their cross-sectional size, whereas the fracture strength exhibits an inverse relationship to the exponent of cross-sectional size of nickel nanowires. By using the MD simulation, the elastic modulus, yield strength, and fracture strength of a nickel nanowire in relationship to its cross-sectional size are well predicted, and they are in remarkable agreement with experimental and available numerical results. The present study demonstrates that the adopted MD simulation is capable of simulating the mechanical behavior of nanowires with respect to their geometrical size and providing numerical data that can be used to develop the empirical formulas on the effect of various physical and geometric parameters on their mechanical properties.
    • Download: (591.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanical Behavior and Size Sensitivity of Nanocrystalline Nickel Wires Using Molecular Dynamics Simulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/56144
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorDan Huang
    contributor authorPizhong Qiao
    date accessioned2017-05-08T21:33:36Z
    date available2017-05-08T21:33:36Z
    date copyrightApril 2011
    date issued2011
    identifier other%28asce%29as%2E1943-5525%2E0000006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/56144
    description abstractThe mechanisms of deformation and failure in face-centered cubic (FCC) nickel nanowires subjected to uniaxial tensile loading are investigated using molecular dynamics (MD) simulation, and the size effect on mechanical properties of FCC metal nanowires is studied. Simulation reveals that the surface free energy has great influence on the deformation and failure mechanism of metal nanowires. As a result of free surfaces and their reconstruction, the surface atoms depart from the perfect crystal lattice positions, leading to the appearance of nanocavities on the surfaces that are exposed to external load. The deformation process of nanowires undergoes expansion and connection of nanocavities from surface into inner lattices. Slip occurs during the deformation process, which is consistent with experimental phenomena. Elastic stiffness, yield, and fracture strength of nickel nanowires with various cross-sectional sizes are obtained, and the size effect on these mechanical properties is further analyzed. Based on numerical results, a set of quantitative prediction formulas are proposed, and they are capable of explaining the size sensitivity of nickel nanowires on the mechanical properties. Both the elastic modulus and yield strength of nickel nanowires are in a linear relationship with respect to the logarithm of their cross-sectional size, whereas the fracture strength exhibits an inverse relationship to the exponent of cross-sectional size of nickel nanowires. By using the MD simulation, the elastic modulus, yield strength, and fracture strength of a nickel nanowire in relationship to its cross-sectional size are well predicted, and they are in remarkable agreement with experimental and available numerical results. The present study demonstrates that the adopted MD simulation is capable of simulating the mechanical behavior of nanowires with respect to their geometrical size and providing numerical data that can be used to develop the empirical formulas on the effect of various physical and geometric parameters on their mechanical properties.
    publisherAmerican Society of Civil Engineers
    titleMechanical Behavior and Size Sensitivity of Nanocrystalline Nickel Wires Using Molecular Dynamics Simulation
    typeJournal Paper
    journal volume24
    journal issue2
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0000006
    treeJournal of Aerospace Engineering:;2011:;Volume ( 024 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian