YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Architectural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Architectural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Wind-Uplift Capacity of Residential Wood Roof-Sheathing Panels Retrofitted with Insulating Foam Adhesive

    Source: Journal of Architectural Engineering:;2011:;Volume ( 017 ):;issue: 004
    Author:
    Peter L. Datin
    ,
    David O. Prevatt
    ,
    Weichiang Pang
    DOI: 10.1061/(ASCE)AE.1943-5568.0000034
    Publisher: American Society of Civil Engineers
    Abstract: This research evaluated and compared the wind-uplift capacity of wood roof-sheathing panels fabricated by using nails with retrofitted roof panels made with nails and closed-cell sprayed polyurethane foam (ccSPF) adhesive. In hurricane-prone areas, structural retrofits of light-framed wood roof structures are needed to mitigate wind damage to existing residential roof structures because the majority of these have inadequate design strength to resist hurricane-force winds. A steel pressure chamber connected to a pressure loading actuator was used to conduct uplift pressure tests on 186 roof panels. The panels were fabricated using 11.1 mm (7/16 in.) thick oriented strand board sheathing fastened to nominal 51 by 102 mm (2 by 4 in.) southern yellow pine framing members spaced 610 mm (24 in.) apart. There were 123 panels tested in typical as-built conditions, and 63 panels tested after they were retrofitted with ccSPF. The parametric study determined the effect of several factors on wind-uplift failure pressure: (1) three nail types, (2) two nail spacings, and (3) three retrofit methods using ccSPF. The hypothesis tested was that ccSPF (traditionally used as wall and roof insulation in houses) could also act as a structural adhesive to increase the wind resistance of existing roofs. Standardized tests do not currently exist for wood roof panels, and so a uniform, static pressure-test protocol was developed on the basis of the ASTM E330, Method B Test Procedure. The results showed that ccSPF retrofits increase the wind-uplift capacity of the pre-1994 code-minimum wood roof panels by as much as 250–300%. This finding is important because it could provide a means to improve the wind resistance of these older roof designs, which may still account for more than 60% of the existing residential inventory. The distributions of roof-failure capacities of as-built and retrofitted roof panels are presented, and statistical parameters are presented for use in developing performance-based design criteria. The documentation and approach is presented as a model test protocol as the basis of a standardized wind-uplift test method for wood roof-sheathing panels.
    • Download: (869.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Wind-Uplift Capacity of Residential Wood Roof-Sheathing Panels Retrofitted with Insulating Foam Adhesive

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/56036
    Collections
    • Journal of Architectural Engineering

    Show full item record

    contributor authorPeter L. Datin
    contributor authorDavid O. Prevatt
    contributor authorWeichiang Pang
    date accessioned2017-05-08T21:33:26Z
    date available2017-05-08T21:33:26Z
    date copyrightDecember 2011
    date issued2011
    identifier other%28asce%29ae%2E1943-5568%2E0000034.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/56036
    description abstractThis research evaluated and compared the wind-uplift capacity of wood roof-sheathing panels fabricated by using nails with retrofitted roof panels made with nails and closed-cell sprayed polyurethane foam (ccSPF) adhesive. In hurricane-prone areas, structural retrofits of light-framed wood roof structures are needed to mitigate wind damage to existing residential roof structures because the majority of these have inadequate design strength to resist hurricane-force winds. A steel pressure chamber connected to a pressure loading actuator was used to conduct uplift pressure tests on 186 roof panels. The panels were fabricated using 11.1 mm (7/16 in.) thick oriented strand board sheathing fastened to nominal 51 by 102 mm (2 by 4 in.) southern yellow pine framing members spaced 610 mm (24 in.) apart. There were 123 panels tested in typical as-built conditions, and 63 panels tested after they were retrofitted with ccSPF. The parametric study determined the effect of several factors on wind-uplift failure pressure: (1) three nail types, (2) two nail spacings, and (3) three retrofit methods using ccSPF. The hypothesis tested was that ccSPF (traditionally used as wall and roof insulation in houses) could also act as a structural adhesive to increase the wind resistance of existing roofs. Standardized tests do not currently exist for wood roof panels, and so a uniform, static pressure-test protocol was developed on the basis of the ASTM E330, Method B Test Procedure. The results showed that ccSPF retrofits increase the wind-uplift capacity of the pre-1994 code-minimum wood roof panels by as much as 250–300%. This finding is important because it could provide a means to improve the wind resistance of these older roof designs, which may still account for more than 60% of the existing residential inventory. The distributions of roof-failure capacities of as-built and retrofitted roof panels are presented, and statistical parameters are presented for use in developing performance-based design criteria. The documentation and approach is presented as a model test protocol as the basis of a standardized wind-uplift test method for wood roof-sheathing panels.
    publisherAmerican Society of Civil Engineers
    titleWind-Uplift Capacity of Residential Wood Roof-Sheathing Panels Retrofitted with Insulating Foam Adhesive
    typeJournal Paper
    journal volume17
    journal issue4
    journal titleJournal of Architectural Engineering
    identifier doi10.1061/(ASCE)AE.1943-5568.0000034
    treeJournal of Architectural Engineering:;2011:;Volume ( 017 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian