YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Neural Network Modeling of Resilient Modulus Using Routine Subgrade Soil Properties

    Source: International Journal of Geomechanics:;2010:;Volume ( 010 ):;issue: 001
    Author:
    Musharraf Zaman
    ,
    Pranshoo Solanki
    ,
    Ali Ebrahimi
    ,
    Luther White
    DOI: 10.1061/(ASCE)1532-3641(2010)10:1(1)
    Publisher: American Society of Civil Engineers
    Abstract: Artificial neural network (ANN) models are developed in this study to correlate resilient modulus with routine properties of subgrade soils and state of stress for pavement design application. A database is developed containing grain size distribution, Atterberg limits, standard Proctor, unconfined compression, and resilient modulus results for 97 soils from 16 different counties in Oklahoma. Of these, 63 soils (
    • Download: (747.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Neural Network Modeling of Resilient Modulus Using Routine Subgrade Soil Properties

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/55213
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorMusharraf Zaman
    contributor authorPranshoo Solanki
    contributor authorAli Ebrahimi
    contributor authorLuther White
    date accessioned2017-05-08T21:32:09Z
    date available2017-05-08T21:32:09Z
    date copyrightFebruary 2010
    date issued2010
    identifier other%28asce%291532-3641%282010%2910%3A1%281%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/55213
    description abstractArtificial neural network (ANN) models are developed in this study to correlate resilient modulus with routine properties of subgrade soils and state of stress for pavement design application. A database is developed containing grain size distribution, Atterberg limits, standard Proctor, unconfined compression, and resilient modulus results for 97 soils from 16 different counties in Oklahoma. Of these, 63 soils (
    publisherAmerican Society of Civil Engineers
    titleNeural Network Modeling of Resilient Modulus Using Routine Subgrade Soil Properties
    typeJournal Paper
    journal volume10
    journal issue1
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)1532-3641(2010)10:1(1)
    treeInternational Journal of Geomechanics:;2010:;Volume ( 010 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian