YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Recurrent and Constructive‐Algorithm Networks For Sand Behavior Modeling

    Source: International Journal of Geomechanics:;2001:;Volume ( 001 ):;issue: 004
    Author:
    Miguel P. Romo
    ,
    Silvia R. García
    ,
    Manuel J. Mendoza
    ,
    Victor Taboada‐Urtuzuástegui
    DOI: 10.1061/(ASCE)1532-3641(2001)1:4(371)
    Publisher: American Society of Civil Engineers
    Abstract: This article presents and discusses various aspects regarding the modeling of the behavior of a coarse granular material using Recurrent Neural Networks (RNNs) and Constructive Algorithms (CAs). A series of undrained triaxial tests following compression stress paths was performed to develop the database for neural network training and testing, where the relative density (D
    • Download: (679.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Recurrent and Constructive‐Algorithm Networks For Sand Behavior Modeling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/54891
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorMiguel P. Romo
    contributor authorSilvia R. García
    contributor authorManuel J. Mendoza
    contributor authorVictor Taboada‐Urtuzuástegui
    date accessioned2017-05-08T21:31:41Z
    date available2017-05-08T21:31:41Z
    date copyrightOctober 2001
    date issued2001
    identifier other%28asce%291532-3641%282001%291%3A4%28371%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/54891
    description abstractThis article presents and discusses various aspects regarding the modeling of the behavior of a coarse granular material using Recurrent Neural Networks (RNNs) and Constructive Algorithms (CAs). A series of undrained triaxial tests following compression stress paths was performed to develop the database for neural network training and testing, where the relative density (D
    publisherAmerican Society of Civil Engineers
    titleRecurrent and Constructive‐Algorithm Networks For Sand Behavior Modeling
    typeJournal Paper
    journal volume1
    journal issue4
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)1532-3641(2001)1:4(371)
    treeInternational Journal of Geomechanics:;2001:;Volume ( 001 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian