YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    3D Finite Element Analysis of Temperature‐Induced Stresses in Dowel Jointed Concrete Pavements

    Source: International Journal of Geomechanics:;2001:;Volume ( 001 ):;issue: 003
    Author:
    Gergis W. William
    ,
    Samir N. Shoukry
    DOI: 10.1061/(ASCE)1532-3641(2001)1:3(291)
    Publisher: American Society of Civil Engineers
    Abstract: A detailed 3D finite element (3DFE) model is developed to investigate the applicability of Westergaard’s curling stress equations to doweled jointed concrete pavements. The model does not rely on any of Westergaard’s assumptions and is capable of handling nonlinear and/or time‐dependent temperature profiles. However, only linear gradient is applied to facilitate the comparison with Westergaard’s results. The transverse stress calculated using Westergaard’s formula was found to be within 10% of that computed using 3DFE. Westergaard’s longitudinal stress equation required a correction. The 3DFE results confirm Westergaard’s finding that the slab curling stresses are independent of slab length. Thus, curling stress does not explain the field‐observed dependency of mid‐slab cracking on the slab length. Through the examination of the mechanism of dowel‐concrete interaction, it is shown that uniform temperature changes play the major role in mid‐slab transverse cracking of relatively long slabs. Due to built‐in slab curling as well as temperature or moisture curling, the dowel bars bend restricting the slab from free contraction due to uniform temperature drop. This gives rise to a large component of stress that has not been considered in previous investigations. Application of a combined temperature gradient and uniform temperature drop to slabs of different lengths revealed the dependency of mid‐slab transverse cracking on slab length.
    • Download: (3.359Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      3D Finite Element Analysis of Temperature‐Induced Stresses in Dowel Jointed Concrete Pavements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/54885
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorGergis W. William
    contributor authorSamir N. Shoukry
    date accessioned2017-05-08T21:31:40Z
    date available2017-05-08T21:31:40Z
    date copyrightJuly 2001
    date issued2001
    identifier other%28asce%291532-3641%282001%291%3A3%28291%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/54885
    description abstractA detailed 3D finite element (3DFE) model is developed to investigate the applicability of Westergaard’s curling stress equations to doweled jointed concrete pavements. The model does not rely on any of Westergaard’s assumptions and is capable of handling nonlinear and/or time‐dependent temperature profiles. However, only linear gradient is applied to facilitate the comparison with Westergaard’s results. The transverse stress calculated using Westergaard’s formula was found to be within 10% of that computed using 3DFE. Westergaard’s longitudinal stress equation required a correction. The 3DFE results confirm Westergaard’s finding that the slab curling stresses are independent of slab length. Thus, curling stress does not explain the field‐observed dependency of mid‐slab cracking on the slab length. Through the examination of the mechanism of dowel‐concrete interaction, it is shown that uniform temperature changes play the major role in mid‐slab transverse cracking of relatively long slabs. Due to built‐in slab curling as well as temperature or moisture curling, the dowel bars bend restricting the slab from free contraction due to uniform temperature drop. This gives rise to a large component of stress that has not been considered in previous investigations. Application of a combined temperature gradient and uniform temperature drop to slabs of different lengths revealed the dependency of mid‐slab transverse cracking on slab length.
    publisherAmerican Society of Civil Engineers
    title3D Finite Element Analysis of Temperature‐Induced Stresses in Dowel Jointed Concrete Pavements
    typeJournal Paper
    journal volume1
    journal issue3
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)1532-3641(2001)1:3(291)
    treeInternational Journal of Geomechanics:;2001:;Volume ( 001 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian