YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fatigue Behavior of Concrete-Filled Fiber-Reinforced Polymer Tubes

    Source: Journal of Composites for Construction:;2008:;Volume ( 012 ):;issue: 004
    Author:
    Iftekhar Ahmad
    ,
    Zhenyu Zhu
    ,
    Amir Mirmiran
    DOI: 10.1061/(ASCE)1090-0268(2008)12:4(478)
    Publisher: American Society of Civil Engineers
    Abstract: To date, research on concrete-filled fiber-reinforced polymer (FRP) tubes (CFFT) has focused on the effect of static loads, simulated seismic loads, and long-term sustained loads. Dynamic fatigue behavior of CFFTs, on the other hand, has received little or no attention. This paper reports on an experimental study to evaluate damage accumulation, stiffness degradation, fatigue life, and residual bending strength of CFFT beams. A total of eight CFFT beams with four different types of FRP tube were tested under four point bending. Test parameters included reinforcement index, fiber architecture, load range, and end restraints. Fatigue performance of CFFT beams is clearly governed by characteristics of the FRP tube and its three phases of damage growth: matrix cracking, matrix delamination, and fiber rupture. Lower reinforcement index increases stiffness degradation and damage growth, and shortens fatigue life. End restraints, e.g., embedment of FRP tube in adjacent members, promote composite action, arrest slippage of concrete core, and enhance fatigue life of CFFT beams. It is suggested that a maximum load level of 25% of the static capacity be imposed for fatigue design of CFFTs. With proper design, CFFTs may withstand repeated traffic loading necessary for bridge girders.
    • Download: (1.518Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fatigue Behavior of Concrete-Filled Fiber-Reinforced Polymer Tubes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/54547
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorIftekhar Ahmad
    contributor authorZhenyu Zhu
    contributor authorAmir Mirmiran
    date accessioned2017-05-08T21:31:08Z
    date available2017-05-08T21:31:08Z
    date copyrightAugust 2008
    date issued2008
    identifier other%28asce%291090-0268%282008%2912%3A4%28478%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/54547
    description abstractTo date, research on concrete-filled fiber-reinforced polymer (FRP) tubes (CFFT) has focused on the effect of static loads, simulated seismic loads, and long-term sustained loads. Dynamic fatigue behavior of CFFTs, on the other hand, has received little or no attention. This paper reports on an experimental study to evaluate damage accumulation, stiffness degradation, fatigue life, and residual bending strength of CFFT beams. A total of eight CFFT beams with four different types of FRP tube were tested under four point bending. Test parameters included reinforcement index, fiber architecture, load range, and end restraints. Fatigue performance of CFFT beams is clearly governed by characteristics of the FRP tube and its three phases of damage growth: matrix cracking, matrix delamination, and fiber rupture. Lower reinforcement index increases stiffness degradation and damage growth, and shortens fatigue life. End restraints, e.g., embedment of FRP tube in adjacent members, promote composite action, arrest slippage of concrete core, and enhance fatigue life of CFFT beams. It is suggested that a maximum load level of 25% of the static capacity be imposed for fatigue design of CFFTs. With proper design, CFFTs may withstand repeated traffic loading necessary for bridge girders.
    publisherAmerican Society of Civil Engineers
    titleFatigue Behavior of Concrete-Filled Fiber-Reinforced Polymer Tubes
    typeJournal Paper
    journal volume12
    journal issue4
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)1090-0268(2008)12:4(478)
    treeJournal of Composites for Construction:;2008:;Volume ( 012 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian