YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Case Study: Seismic Retrofitting of a Medieval Bell Tower with FRP

    Source: Journal of Composites for Construction:;2007:;Volume ( 011 ):;issue: 003
    Author:
    Edoardo Cosenza
    ,
    Iunio Iervolino
    DOI: 10.1061/(ASCE)1090-0268(2007)11:3(319)
    Publisher: American Society of Civil Engineers
    Abstract: Seismic retrofitting of monument structures requires compliance with restrictive constraints related to the preservation of original artistic and structural features. Any conceived intervention must achieve structural performance yet still respect the appearance and structural mechanism of the original and be as minimally invasive as possible. Therefore, traditional retrofit strategies may not be suitable for such purposes, and structural engineers need to develop specific techniques. Innovative materials (e.g., composites) may be helpful, as demonstrated by the case study presented in this paper. Fiber-reinforced plastics (FRPs) were used for the design, analysis, and installation of the retrofit for the medieval bell tower in Serra San Quirico (Ancona, Italy). A FRP tie system is applied to the inner walls and anchored at the base by a reinforced concrete slab, independent of the tower’s foundation. The intervention enhances the seismic capacity of the structure and is fully provisional as it may be removed by heating the FRP with a hot air jet. The design process consisted of preliminary finite-element simulation and on-site structural assessment. Effectiveness is evaluated by a comparison of nonlinear static analyses (pushover) of the retrofitted and original structures. Finally, seismic risk reduction is computed by considering probabilistic seismic hazard at the site. Installation issues and the current appearance of the structure are also discussed.
    • Download: (668.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Case Study: Seismic Retrofitting of a Medieval Bell Tower with FRP

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/54450
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorEdoardo Cosenza
    contributor authorIunio Iervolino
    date accessioned2017-05-08T21:30:58Z
    date available2017-05-08T21:30:58Z
    date copyrightJune 2007
    date issued2007
    identifier other%28asce%291090-0268%282007%2911%3A3%28319%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/54450
    description abstractSeismic retrofitting of monument structures requires compliance with restrictive constraints related to the preservation of original artistic and structural features. Any conceived intervention must achieve structural performance yet still respect the appearance and structural mechanism of the original and be as minimally invasive as possible. Therefore, traditional retrofit strategies may not be suitable for such purposes, and structural engineers need to develop specific techniques. Innovative materials (e.g., composites) may be helpful, as demonstrated by the case study presented in this paper. Fiber-reinforced plastics (FRPs) were used for the design, analysis, and installation of the retrofit for the medieval bell tower in Serra San Quirico (Ancona, Italy). A FRP tie system is applied to the inner walls and anchored at the base by a reinforced concrete slab, independent of the tower’s foundation. The intervention enhances the seismic capacity of the structure and is fully provisional as it may be removed by heating the FRP with a hot air jet. The design process consisted of preliminary finite-element simulation and on-site structural assessment. Effectiveness is evaluated by a comparison of nonlinear static analyses (pushover) of the retrofitted and original structures. Finally, seismic risk reduction is computed by considering probabilistic seismic hazard at the site. Installation issues and the current appearance of the structure are also discussed.
    publisherAmerican Society of Civil Engineers
    titleCase Study: Seismic Retrofitting of a Medieval Bell Tower with FRP
    typeJournal Paper
    journal volume11
    journal issue3
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)1090-0268(2007)11:3(319)
    treeJournal of Composites for Construction:;2007:;Volume ( 011 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian