YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Splicing of Precast Concrete-Filled FRP Tubes

    Source: Journal of Composites for Construction:;2006:;Volume ( 010 ):;issue: 004
    Author:
    Zhenyu Zhu
    ,
    Iftekhar Ahmad
    ,
    Amir Mirmiran
    DOI: 10.1061/(ASCE)1090-0268(2006)10:4(345)
    Publisher: American Society of Civil Engineers
    Abstract: This paper reports on a feasibility study of splicing techniques for precast concrete-filled fiber-reinforced polymer (FRP) tubes (CFFT). A total of four spliced beams were tested. Three were internally spliced using grouted steel bars, grouted FRP bars, or unbonded posttensioning bars, and the fourth was spliced with FRP socket, commonly used in the piping industry. A control CFFT beam with no internal reinforcement was also tested as a reference. The experiments showed the superior effect of FRP tube continuity on system performance. Although initially stiffer, none of the spliced beams tested in this program was as strong as the control specimen. This may be primarily attributed to the lack of continuity of the FRP tube, as well as the quality of the cement grout for dowel reinforcement. Posttensioning proved to be efficient in improving system performance. The system may benefit from FRP continuity through either a longer and more effective socket or a threaded coupler insert or sleeve. Internal reinforcement can further increase the stiffness and strength of the connection, if grouting quality is controlled. Splicing may be improved by combining the methods tested in this program. Further understanding of the implications of composite action between FRP and concrete was achieved. Finally, the behavior of spliced CFFT beams was closely described using a combination of beam theory and rigid body deformations; the extent of the latter depends on joint stiffness.
    • Download: (1.591Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Splicing of Precast Concrete-Filled FRP Tubes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/54387
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorZhenyu Zhu
    contributor authorIftekhar Ahmad
    contributor authorAmir Mirmiran
    date accessioned2017-05-08T21:30:53Z
    date available2017-05-08T21:30:53Z
    date copyrightAugust 2006
    date issued2006
    identifier other%28asce%291090-0268%282006%2910%3A4%28345%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/54387
    description abstractThis paper reports on a feasibility study of splicing techniques for precast concrete-filled fiber-reinforced polymer (FRP) tubes (CFFT). A total of four spliced beams were tested. Three were internally spliced using grouted steel bars, grouted FRP bars, or unbonded posttensioning bars, and the fourth was spliced with FRP socket, commonly used in the piping industry. A control CFFT beam with no internal reinforcement was also tested as a reference. The experiments showed the superior effect of FRP tube continuity on system performance. Although initially stiffer, none of the spliced beams tested in this program was as strong as the control specimen. This may be primarily attributed to the lack of continuity of the FRP tube, as well as the quality of the cement grout for dowel reinforcement. Posttensioning proved to be efficient in improving system performance. The system may benefit from FRP continuity through either a longer and more effective socket or a threaded coupler insert or sleeve. Internal reinforcement can further increase the stiffness and strength of the connection, if grouting quality is controlled. Splicing may be improved by combining the methods tested in this program. Further understanding of the implications of composite action between FRP and concrete was achieved. Finally, the behavior of spliced CFFT beams was closely described using a combination of beam theory and rigid body deformations; the extent of the latter depends on joint stiffness.
    publisherAmerican Society of Civil Engineers
    titleSplicing of Precast Concrete-Filled FRP Tubes
    typeJournal Paper
    journal volume10
    journal issue4
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)1090-0268(2006)10:4(345)
    treeJournal of Composites for Construction:;2006:;Volume ( 010 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian