YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Composite T-Beams Using Reduced-Scale Rectangular FRP Tubes and Concrete Slabs

    Source: Journal of Composites for Construction:;2006:;Volume ( 010 ):;issue: 002
    Author:
    Amir Fam
    ,
    Trevor Skutezky
    DOI: 10.1061/(ASCE)1090-0268(2006)10:2(172)
    Publisher: American Society of Civil Engineers
    Abstract: A composite system consisting of rectangular glass fiber reinforced polymer (GFRP) tubes connected to concrete slabs, using GFRP dowels has been developed. Seven beam specimens have been tested, including hollow and concrete-filled GFRP tubes with and without concrete slabs. Beam–slab specimens had two different shear span-to-depth ratios and one specimen had carbon–fiber reinforced polymer (CFRP)-laminated tension flange for enhanced flexural performance. Additionally, three double-shear GFRP tube-slab assemblies have been tested to assess the shear behavior of GFRP dowels, in both hollow and concrete-filled tubes. Three compression stubs of concrete-filled tubes were also tested by loading them parallel to the cross-section plane, to study GFRP web buckling behavior. The study showed that GFRP dowels performed well in shear and that composite action is quite feasible. While hollow tubes can act compositely with concrete slabs, more slip between the tube and slab would occur, compared to a concrete-filled tube-slab system. Simplified models are proposed to predict critical web buckling load of fiber reinforced polymer (FRP) tubes. Based on the models, a critical shear span-to-depth ratio of 4 was determined, below which web buckling may occur before flexural failure.
    • Download: (1.141Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Composite T-Beams Using Reduced-Scale Rectangular FRP Tubes and Concrete Slabs

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/54363
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorAmir Fam
    contributor authorTrevor Skutezky
    date accessioned2017-05-08T21:30:52Z
    date available2017-05-08T21:30:52Z
    date copyrightApril 2006
    date issued2006
    identifier other%28asce%291090-0268%282006%2910%3A2%28172%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/54363
    description abstractA composite system consisting of rectangular glass fiber reinforced polymer (GFRP) tubes connected to concrete slabs, using GFRP dowels has been developed. Seven beam specimens have been tested, including hollow and concrete-filled GFRP tubes with and without concrete slabs. Beam–slab specimens had two different shear span-to-depth ratios and one specimen had carbon–fiber reinforced polymer (CFRP)-laminated tension flange for enhanced flexural performance. Additionally, three double-shear GFRP tube-slab assemblies have been tested to assess the shear behavior of GFRP dowels, in both hollow and concrete-filled tubes. Three compression stubs of concrete-filled tubes were also tested by loading them parallel to the cross-section plane, to study GFRP web buckling behavior. The study showed that GFRP dowels performed well in shear and that composite action is quite feasible. While hollow tubes can act compositely with concrete slabs, more slip between the tube and slab would occur, compared to a concrete-filled tube-slab system. Simplified models are proposed to predict critical web buckling load of fiber reinforced polymer (FRP) tubes. Based on the models, a critical shear span-to-depth ratio of 4 was determined, below which web buckling may occur before flexural failure.
    publisherAmerican Society of Civil Engineers
    titleComposite T-Beams Using Reduced-Scale Rectangular FRP Tubes and Concrete Slabs
    typeJournal Paper
    journal volume10
    journal issue2
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)1090-0268(2006)10:2(172)
    treeJournal of Composites for Construction:;2006:;Volume ( 010 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian