YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Debonding in RC Beams Shear Strengthened with Complete FRP Wraps

    Source: Journal of Composites for Construction:;2005:;Volume ( 009 ):;issue: 005
    Author:
    S. Y. Cao
    ,
    J. F. Chen
    ,
    J. G. Teng
    ,
    Z. Hao
    ,
    J. Chen
    DOI: 10.1061/(ASCE)1090-0268(2005)9:5(417)
    Publisher: American Society of Civil Engineers
    Abstract: Substantial research has been conducted on the shear strengthening of reinforced concrete (RC) beams with bonded fiber reinforced polymer (FRP) strips. The beams may be strengthened in various ways: complete FRP wraps covering the whole cross section (i.e., complete wrapping), FRP U jackets covering the two sides and the tension face (i.e., U jacketing), and FRP strips bonded to the sides only (i.e., side bonding). Shear failure of such strengthened beams is generally in one of two modes: FRP rupture and debonding. The former mode governs in almost all beams with complete FRP wraps and some beams with U jackets, while the latter mode governs in all beams with side strips and U jackets. In RC beams strengthened with complete wraps, referred to as FRP wrapped beams, the shear failure process usually starts with the debonding of FRP from the sides of the beam near the critical shear crack, but ultimate failure is by rupture of the FRP. Most previous research has been concerned with the ultimate failure of FRP wrapped beams when FRP ruptures. However, debonding of FRP from the sides is at least a serviceability limit state and may also be taken as the ultimate limit state. This paper presents an experimental study on this debonding failure state in which a total of 18 beams were tested. The paper focuses on the distribution of strains in the FRP strips intersected by the critical shear crack, and the shear capacity at debonding. A simple model is proposed to predict the contribution of FRP to the shear capacity of the beam at the complete debonding of the critical FRP strip.
    • Download: (434.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Debonding in RC Beams Shear Strengthened with Complete FRP Wraps

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/54328
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorS. Y. Cao
    contributor authorJ. F. Chen
    contributor authorJ. G. Teng
    contributor authorZ. Hao
    contributor authorJ. Chen
    date accessioned2017-05-08T21:30:47Z
    date available2017-05-08T21:30:47Z
    date copyrightOctober 2005
    date issued2005
    identifier other%28asce%291090-0268%282005%299%3A5%28417%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/54328
    description abstractSubstantial research has been conducted on the shear strengthening of reinforced concrete (RC) beams with bonded fiber reinforced polymer (FRP) strips. The beams may be strengthened in various ways: complete FRP wraps covering the whole cross section (i.e., complete wrapping), FRP U jackets covering the two sides and the tension face (i.e., U jacketing), and FRP strips bonded to the sides only (i.e., side bonding). Shear failure of such strengthened beams is generally in one of two modes: FRP rupture and debonding. The former mode governs in almost all beams with complete FRP wraps and some beams with U jackets, while the latter mode governs in all beams with side strips and U jackets. In RC beams strengthened with complete wraps, referred to as FRP wrapped beams, the shear failure process usually starts with the debonding of FRP from the sides of the beam near the critical shear crack, but ultimate failure is by rupture of the FRP. Most previous research has been concerned with the ultimate failure of FRP wrapped beams when FRP ruptures. However, debonding of FRP from the sides is at least a serviceability limit state and may also be taken as the ultimate limit state. This paper presents an experimental study on this debonding failure state in which a total of 18 beams were tested. The paper focuses on the distribution of strains in the FRP strips intersected by the critical shear crack, and the shear capacity at debonding. A simple model is proposed to predict the contribution of FRP to the shear capacity of the beam at the complete debonding of the critical FRP strip.
    publisherAmerican Society of Civil Engineers
    titleDebonding in RC Beams Shear Strengthened with Complete FRP Wraps
    typeJournal Paper
    journal volume9
    journal issue5
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)1090-0268(2005)9:5(417)
    treeJournal of Composites for Construction:;2005:;Volume ( 009 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian