YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Ultimate Condition of Fiber Reinforced Polymer-Confined Concrete

    Source: Journal of Composites for Construction:;2004:;Volume ( 008 ):;issue: 006
    Author:
    L. Lam
    ,
    J. G. Teng
    DOI: 10.1061/(ASCE)1090-0268(2004)8:6(539)
    Publisher: American Society of Civil Engineers
    Abstract: One important application of fiber reinforced polymer (FRP) composites is as a confining material for concrete in the retrofit of existing concrete columns by the provision of FRP jackets. Such jackets are commonly formed in a wet layup process, with the fibers being only or predominantly in the hoop direction. It has been well established in recent studies that the rupture strains/strengths of FRP measured in tests on such FRP-confined concrete cylinders fall substantially below those from flat coupon tensile tests, but the causes are unclear. This paper presents the results of a study that is aimed at clarifying these causes. To this end, the paper reports and compares the ultimate tensile strains of two types of FRP (carbon FRP and glass FRP) obtained from three types of tests—flat coupon tensile tests, ring splitting tests, and FRP-confined concrete cylinder tests. Based on comparisons of these test results, it can be concluded that the FRP hoop rupture strains in FRP-confined concrete cylinders are reduced below the ultimate tensile strains from flat coupon tests by at least three factors—(1) the curvature of the FRP jacket; (2) the deformation localization of the cracked concrete; and (3) the existence of an overlapping zone. While the first factor that reduces the in situ strain capacity of FRP on confined concrete is material dependent, the last two factors that result in a nonuniform strain distribution in the jacket are independent of the FRP material properties. The third effect reduces the average hoop rupture but does not affect the distribution of the confining pressure, as the FRP jacket is thicker in the overlapping zone.
    • Download: (171.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Ultimate Condition of Fiber Reinforced Polymer-Confined Concrete

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/54273
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorL. Lam
    contributor authorJ. G. Teng
    date accessioned2017-05-08T21:30:42Z
    date available2017-05-08T21:30:42Z
    date copyrightDecember 2004
    date issued2004
    identifier other%28asce%291090-0268%282004%298%3A6%28539%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/54273
    description abstractOne important application of fiber reinforced polymer (FRP) composites is as a confining material for concrete in the retrofit of existing concrete columns by the provision of FRP jackets. Such jackets are commonly formed in a wet layup process, with the fibers being only or predominantly in the hoop direction. It has been well established in recent studies that the rupture strains/strengths of FRP measured in tests on such FRP-confined concrete cylinders fall substantially below those from flat coupon tensile tests, but the causes are unclear. This paper presents the results of a study that is aimed at clarifying these causes. To this end, the paper reports and compares the ultimate tensile strains of two types of FRP (carbon FRP and glass FRP) obtained from three types of tests—flat coupon tensile tests, ring splitting tests, and FRP-confined concrete cylinder tests. Based on comparisons of these test results, it can be concluded that the FRP hoop rupture strains in FRP-confined concrete cylinders are reduced below the ultimate tensile strains from flat coupon tests by at least three factors—(1) the curvature of the FRP jacket; (2) the deformation localization of the cracked concrete; and (3) the existence of an overlapping zone. While the first factor that reduces the in situ strain capacity of FRP on confined concrete is material dependent, the last two factors that result in a nonuniform strain distribution in the jacket are independent of the FRP material properties. The third effect reduces the average hoop rupture but does not affect the distribution of the confining pressure, as the FRP jacket is thicker in the overlapping zone.
    publisherAmerican Society of Civil Engineers
    titleUltimate Condition of Fiber Reinforced Polymer-Confined Concrete
    typeJournal Paper
    journal volume8
    journal issue6
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)1090-0268(2004)8:6(539)
    treeJournal of Composites for Construction:;2004:;Volume ( 008 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian