contributor author | Costas P. Antonopoulos | |
contributor author | Thanasis C. Triantafillou | |
date accessioned | 2017-05-08T21:30:32Z | |
date available | 2017-05-08T21:30:32Z | |
date copyright | February 2003 | |
date issued | 2003 | |
identifier other | %28asce%291090-0268%282003%297%3A1%2839%29.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/54166 | |
description abstract | The results of a comprehensive experimental program, aimed at providing a fundamental understanding of the behavior of shear-critical exterior reinforced concrete (RC) joints strengthened with fiber reinforced polymers (FRP) under simulated seismic load, are presented in this study. The role of various parameters on the effectiveness of FRP is examined through 2/3-scale testing of 18 exterior RC joints. Conclusions are drawn on the basis of certain load versus imposed displacement response characteristics, comprising the strength (maximum lateral load), the stiffness, and the cumulative energy dissipation capacity. The results demonstrate the important role of mechanical anchorages in limiting premature debonding, and they provide important information on the role of various parameters, including: area fraction of FRP; distribution of FRP between the beam and the column; column axial load; internal joint (steel) reinforcement; initial damage; carbon versus glass fibers; sheets versus strips; and effect of transverse beams. | |
publisher | American Society of Civil Engineers | |
title | Experimental Investigation of FRP-Strengthened RC Beam-Column Joints | |
type | Journal Paper | |
journal volume | 7 | |
journal issue | 1 | |
journal title | Journal of Composites for Construction | |
identifier doi | 10.1061/(ASCE)1090-0268(2003)7:1(39) | |
tree | Journal of Composites for Construction:;2003:;Volume ( 007 ):;issue: 001 | |
contenttype | Fulltext | |