YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Structural Characterization of Hybrid Fiber-Reinforced Polymer-Glulam Panels for Bridge Decks

    Source: Journal of Composites for Construction:;2002:;Volume ( 006 ):;issue: 003
    Author:
    Roberto Lopez-Anido
    ,
    Han Xu
    DOI: 10.1061/(ASCE)1090-0268(2002)6:3(194)
    Publisher: American Society of Civil Engineers
    Abstract: The structural characterization of hybrid fiber-reinforced polymer (FRP)–glued laminated (glulam) panels for bridge deck construction is examined using a combined analytical and experimental approach. The structural system is based on the concept of sandwich construction with strong and stiff FRP composite skins bonded to an inner glulam panel. The FRP composite material was made of E-glass reinforcing fabrics embedded in a vinyl ester resin matrix. The glulam panels were fabricated with bonded eastern hemlock vertical laminations. The FRP reinforcement was applied on the top and bottom faces of the glulam panel by wet layup and compacted using vacuum bagging. An experimental protocol based on a two-span continuous bending test configuration is proposed to characterize the stiffness, ductility, and strength response of FRP-glulam panels under simulated loads. Half-scale FRP-glulam panel prototypes with two different fiber orientations, unidirectional (0°) and angle-ply (±45°), were studied and the structural response correlated with control glulam panels. A simple beam linear model based on laminate analysis and first-order shear deformation theory was proposed to compute stiffness properties and to predict service load deflections. In addition, a beam nonlinear model based on layered moment-curvature numerical analysis was proposed to predict ultimate load and deflections. Correlations between experimental results and the two proposed beam models emphasize the need for complementing both analytical tools to characterize the hybrid panel structural response with a view toward bridge deck design.
    • Download: (294.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Structural Characterization of Hybrid Fiber-Reinforced Polymer-Glulam Panels for Bridge Decks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/54149
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorRoberto Lopez-Anido
    contributor authorHan Xu
    date accessioned2017-05-08T21:30:31Z
    date available2017-05-08T21:30:31Z
    date copyrightAugust 2002
    date issued2002
    identifier other%28asce%291090-0268%282002%296%3A3%28194%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/54149
    description abstractThe structural characterization of hybrid fiber-reinforced polymer (FRP)–glued laminated (glulam) panels for bridge deck construction is examined using a combined analytical and experimental approach. The structural system is based on the concept of sandwich construction with strong and stiff FRP composite skins bonded to an inner glulam panel. The FRP composite material was made of E-glass reinforcing fabrics embedded in a vinyl ester resin matrix. The glulam panels were fabricated with bonded eastern hemlock vertical laminations. The FRP reinforcement was applied on the top and bottom faces of the glulam panel by wet layup and compacted using vacuum bagging. An experimental protocol based on a two-span continuous bending test configuration is proposed to characterize the stiffness, ductility, and strength response of FRP-glulam panels under simulated loads. Half-scale FRP-glulam panel prototypes with two different fiber orientations, unidirectional (0°) and angle-ply (±45°), were studied and the structural response correlated with control glulam panels. A simple beam linear model based on laminate analysis and first-order shear deformation theory was proposed to compute stiffness properties and to predict service load deflections. In addition, a beam nonlinear model based on layered moment-curvature numerical analysis was proposed to predict ultimate load and deflections. Correlations between experimental results and the two proposed beam models emphasize the need for complementing both analytical tools to characterize the hybrid panel structural response with a view toward bridge deck design.
    publisherAmerican Society of Civil Engineers
    titleStructural Characterization of Hybrid Fiber-Reinforced Polymer-Glulam Panels for Bridge Decks
    typeJournal Paper
    journal volume6
    journal issue3
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)1090-0268(2002)6:3(194)
    treeJournal of Composites for Construction:;2002:;Volume ( 006 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian