YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Behavior and Ductility of Simple and Continuous FRP Reinforced Beams

    Source: Journal of Composites for Construction:;1998:;Volume ( 002 ):;issue: 004
    Author:
    N. F. Grace
    ,
    A. K. Soliman
    ,
    G. Abdel-Sayed
    ,
    K. R. Saleh
    DOI: 10.1061/(ASCE)1090-0268(1998)2:4(186)
    Publisher: American Society of Civil Engineers
    Abstract: The behaviors of simply and continuously supported beams reinforced with fiber reinforced polymer (FRP) materials are presented in this paper. The experimental testing program included seven simple rectangular beams and seven continuous T-section beams. Reinforcing bars and stirrups were made of steel, carbon, or glass fiber reinforced polymer (GFRP). It was concluded that the use of GFRP stirrups increased the shear deformation, and as a result deflection increased. Also, GFRP stirrups changed the failure mode from flexural to shear or flexural-shear, depending on the type of reinforcement bars (FRP or steel). Furthermore, the use of FRP reinforcement in continuous beams increased deformation. This increase remained small and acceptable at the service load level, but significantly increased near failure. While different FRP reinforcement arrangements were found to have the same load capacity as steel reinforcements in conventional beams, failure modes and ductility differed. Failure mode was governed by both the type of reinforcing bars and the type of stirrups. Additionally, the dowel effect influences the load carrying capacity of FRP reinforced continuous beams. A method for evaluating the ductility is presented. The ratio of absorbed energy at failure to the total energy, “energy ratio,” was used as a measure of ductility. Based on this definition, a classification of ductile, semiductile, and brittle behavior is suggested. The theoretical results obtained using the suggested method were substantiated experimentally. The continuous beams experienced higher “energy ratios” than did simple beams.
    • Download: (1.917Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Behavior and Ductility of Simple and Continuous FRP Reinforced Beams

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/54014
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorN. F. Grace
    contributor authorA. K. Soliman
    contributor authorG. Abdel-Sayed
    contributor authorK. R. Saleh
    date accessioned2017-05-08T21:30:19Z
    date available2017-05-08T21:30:19Z
    date copyrightNovember 1998
    date issued1998
    identifier other%28asce%291090-0268%281998%292%3A4%28186%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/54014
    description abstractThe behaviors of simply and continuously supported beams reinforced with fiber reinforced polymer (FRP) materials are presented in this paper. The experimental testing program included seven simple rectangular beams and seven continuous T-section beams. Reinforcing bars and stirrups were made of steel, carbon, or glass fiber reinforced polymer (GFRP). It was concluded that the use of GFRP stirrups increased the shear deformation, and as a result deflection increased. Also, GFRP stirrups changed the failure mode from flexural to shear or flexural-shear, depending on the type of reinforcement bars (FRP or steel). Furthermore, the use of FRP reinforcement in continuous beams increased deformation. This increase remained small and acceptable at the service load level, but significantly increased near failure. While different FRP reinforcement arrangements were found to have the same load capacity as steel reinforcements in conventional beams, failure modes and ductility differed. Failure mode was governed by both the type of reinforcing bars and the type of stirrups. Additionally, the dowel effect influences the load carrying capacity of FRP reinforced continuous beams. A method for evaluating the ductility is presented. The ratio of absorbed energy at failure to the total energy, “energy ratio,” was used as a measure of ductility. Based on this definition, a classification of ductile, semiductile, and brittle behavior is suggested. The theoretical results obtained using the suggested method were substantiated experimentally. The continuous beams experienced higher “energy ratios” than did simple beams.
    publisherAmerican Society of Civil Engineers
    titleBehavior and Ductility of Simple and Continuous FRP Reinforced Beams
    typeJournal Paper
    journal volume2
    journal issue4
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)1090-0268(1998)2:4(186)
    treeJournal of Composites for Construction:;1998:;Volume ( 002 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian