YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Competition of Cd, Cu, and Pb Adsorption on Goethite

    Source: Journal of Environmental Engineering:;2000:;Volume ( 126 ):;issue: 001
    Author:
    Chris A. Christophi
    ,
    Lisa Axe
    DOI: 10.1061/(ASCE)0733-9372(2000)126:1(66)
    Publisher: American Society of Civil Engineers
    Abstract: Competition of copper, lead, and cadmium adsorption on goethite was studied and found to be dependent on metal ion and oxide surface characteristics. In adsorption edges, ionic strength effects suggested copper, lead, and cadmium are specifically adsorbed on goethite. Metal capacity on the goethite surface was found to increase with metal electronegativity: Cu > Pb > Cd. On the other hand, the equilibrium constant for lead was greater than that of copper, which is in agreement with their hydrated radii (Pb < Cu < Cd). Modeling revealed that the single-site Langmuir isotherm described the Cu-Cd and Pb-Cd adsorption and competition results within the error of the model. Furthermore, although the model provided a good fit for Pb and Cd data in the Pb-Cu and Pb-Cu-Cd systems, it underpredicted copper adsorption. The difference in site densities between copper and lead revealed a set of sites not available for competition. Using this approach where copper affinity is equivalent for both sites, the model provided a good fit for copper adsorption and competition. This study confirms that adsorption competition plays a crucial role in contaminant mobility in the environment.
    • Download: (159.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Competition of Cd, Cu, and Pb Adsorption on Goethite

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/52587
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorChris A. Christophi
    contributor authorLisa Axe
    date accessioned2017-05-08T21:28:03Z
    date available2017-05-08T21:28:03Z
    date copyrightJanuary 2000
    date issued2000
    identifier other%28asce%290733-9372%282000%29126%3A1%2866%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/52587
    description abstractCompetition of copper, lead, and cadmium adsorption on goethite was studied and found to be dependent on metal ion and oxide surface characteristics. In adsorption edges, ionic strength effects suggested copper, lead, and cadmium are specifically adsorbed on goethite. Metal capacity on the goethite surface was found to increase with metal electronegativity: Cu > Pb > Cd. On the other hand, the equilibrium constant for lead was greater than that of copper, which is in agreement with their hydrated radii (Pb < Cu < Cd). Modeling revealed that the single-site Langmuir isotherm described the Cu-Cd and Pb-Cd adsorption and competition results within the error of the model. Furthermore, although the model provided a good fit for Pb and Cd data in the Pb-Cu and Pb-Cu-Cd systems, it underpredicted copper adsorption. The difference in site densities between copper and lead revealed a set of sites not available for competition. Using this approach where copper affinity is equivalent for both sites, the model provided a good fit for copper adsorption and competition. This study confirms that adsorption competition plays a crucial role in contaminant mobility in the environment.
    publisherAmerican Society of Civil Engineers
    titleCompetition of Cd, Cu, and Pb Adsorption on Goethite
    typeJournal Paper
    journal volume126
    journal issue1
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)0733-9372(2000)126:1(66)
    treeJournal of Environmental Engineering:;2000:;Volume ( 126 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian