YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Particle Stratification on Fixed Bed Absorber Performance

    Source: Journal of Environmental Engineering:;1999:;Volume ( 125 ):;issue: 008
    Author:
    Alok A. Pota
    ,
    Alexander P. Mathews
    DOI: 10.1061/(ASCE)0733-9372(1999)125:8(705)
    Publisher: American Society of Civil Engineers
    Abstract: The effects of adsorbent particle size distribution (PSD) and the layering of particles in stratified and reverse stratified modes on the performance of fixed bed adsorber were investigated. Using trichloroethylene as the adsorbate and granular activated carbon as the adsorbent, experimental studies were conducted in stratified beds for different flow rates and influent concentrations. The homogeneous solid diffusion model was modified to take into account PSD and was used to simulate breakthrough curves. The PSD-based model was validated using experimental data and was found to be more accurate in predicting the breakthrough curves than the non-PSD-based model. The validated model was used to conduct simulations to examine the effects of key variables on performance in the stratified and reverse stratified modes. In the reverse stratified mode, the adsorbent particle size decreases gradually in the direction of flow. Model simulations indicate that this mode of operation increases breakthrough time, decreases the time to reach saturation, and thereby increases the overall adsorbent capacity utilization. The mass transfer zone for the reverse stratified bed was found to be narrower and sharper than that for the stratified bed. These model predictions have important ramifications to the water and wastewater industry in terms of reducing the overall cost of treatment using granular activated carbon adsorption.
    • Download: (143.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Particle Stratification on Fixed Bed Absorber Performance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/52241
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorAlok A. Pota
    contributor authorAlexander P. Mathews
    date accessioned2017-05-08T21:27:34Z
    date available2017-05-08T21:27:34Z
    date copyrightAugust 1999
    date issued1999
    identifier other%28asce%290733-9372%281999%29125%3A8%28705%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/52241
    description abstractThe effects of adsorbent particle size distribution (PSD) and the layering of particles in stratified and reverse stratified modes on the performance of fixed bed adsorber were investigated. Using trichloroethylene as the adsorbate and granular activated carbon as the adsorbent, experimental studies were conducted in stratified beds for different flow rates and influent concentrations. The homogeneous solid diffusion model was modified to take into account PSD and was used to simulate breakthrough curves. The PSD-based model was validated using experimental data and was found to be more accurate in predicting the breakthrough curves than the non-PSD-based model. The validated model was used to conduct simulations to examine the effects of key variables on performance in the stratified and reverse stratified modes. In the reverse stratified mode, the adsorbent particle size decreases gradually in the direction of flow. Model simulations indicate that this mode of operation increases breakthrough time, decreases the time to reach saturation, and thereby increases the overall adsorbent capacity utilization. The mass transfer zone for the reverse stratified bed was found to be narrower and sharper than that for the stratified bed. These model predictions have important ramifications to the water and wastewater industry in terms of reducing the overall cost of treatment using granular activated carbon adsorption.
    publisherAmerican Society of Civil Engineers
    titleEffects of Particle Stratification on Fixed Bed Absorber Performance
    typeJournal Paper
    journal volume125
    journal issue8
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)0733-9372(1999)125:8(705)
    treeJournal of Environmental Engineering:;1999:;Volume ( 125 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian