YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of UV System Modifications on Disinfection Performance

    Source: Journal of Environmental Engineering:;1999:;Volume ( 125 ):;issue: 005
    Author:
    Kuang-ping Chiu
    ,
    Dennis A. Lyn
    ,
    Philippe Savoye
    ,
    Ernest R. Blatchley III
    DOI: 10.1061/(ASCE)0733-9372(1999)125:5(459)
    Publisher: American Society of Civil Engineers
    Abstract: Numerical simulations have been performed to gain a better understanding of ultraviolet (UV) disinfection process performance. Similar simulations in previous studies revealed critical paths through which particles moved and experienced low UV doses. In vertical UV systems, these paths generally are found near the channel walls with characteristics of high velocity and low turbulence intensity. Moreover, these paths generally coincide with low UV intensity zones and appear to represent the primary limitation of process performance. Reactor modifications have been designed to eliminate or modify these trajectories, thereby improving process performance. In a pilot-scale open-channel system with a vertical lamp orientation, two geometric modifications with “wave” and “baffle” shapes have been developed and examined. The results of these pilot tests confirmed the improvement of process performance when compared with an unmodified UV system. As in the case of the unmodified UV systems, a numerical model that combines kinetic information from a well-mixed batch reactor with a dose-distribution function was used to predict process performance of the UV system with the wave-shaped modification. A dose-distribution function that incorporates the effects of spatial nonuniformities in both hydrodynamics (through a random-walk model) and UV intensity (through a point-source-summation model) was developed. The dose-response function for microorganisms was obtained from completely mixed batch reactor experiments with a collimated beam. Predictions of disinfection efficacy confirmed the ability of the modified systems to improve microbial inactivation.
    • Download: (405.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of UV System Modifications on Disinfection Performance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/51830
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorKuang-ping Chiu
    contributor authorDennis A. Lyn
    contributor authorPhilippe Savoye
    contributor authorErnest R. Blatchley III
    date accessioned2017-05-08T21:26:51Z
    date available2017-05-08T21:26:51Z
    date copyrightMay 1999
    date issued1999
    identifier other%28asce%290733-9372%281999%29125%3A5%28459%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/51830
    description abstractNumerical simulations have been performed to gain a better understanding of ultraviolet (UV) disinfection process performance. Similar simulations in previous studies revealed critical paths through which particles moved and experienced low UV doses. In vertical UV systems, these paths generally are found near the channel walls with characteristics of high velocity and low turbulence intensity. Moreover, these paths generally coincide with low UV intensity zones and appear to represent the primary limitation of process performance. Reactor modifications have been designed to eliminate or modify these trajectories, thereby improving process performance. In a pilot-scale open-channel system with a vertical lamp orientation, two geometric modifications with “wave” and “baffle” shapes have been developed and examined. The results of these pilot tests confirmed the improvement of process performance when compared with an unmodified UV system. As in the case of the unmodified UV systems, a numerical model that combines kinetic information from a well-mixed batch reactor with a dose-distribution function was used to predict process performance of the UV system with the wave-shaped modification. A dose-distribution function that incorporates the effects of spatial nonuniformities in both hydrodynamics (through a random-walk model) and UV intensity (through a point-source-summation model) was developed. The dose-response function for microorganisms was obtained from completely mixed batch reactor experiments with a collimated beam. Predictions of disinfection efficacy confirmed the ability of the modified systems to improve microbial inactivation.
    publisherAmerican Society of Civil Engineers
    titleEffect of UV System Modifications on Disinfection Performance
    typeJournal Paper
    journal volume125
    journal issue5
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)0733-9372(1999)125:5(459)
    treeJournal of Environmental Engineering:;1999:;Volume ( 125 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian