YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Vulnerability Assessment of Cable-Stayed Bridges in Probabilistic Domain

    Source: Journal of Bridge Engineering:;2009:;Volume ( 014 ):;issue: 004
    Author:
    D. Yan
    ,
    C. C. Chang
    DOI: 10.1061/(ASCE)1084-0702(2009)14:4(270)
    Publisher: American Society of Civil Engineers
    Abstract: Vulnerability of a structure under terrorist attack can be regarded as the study of its behavior against blast-induced loads. A structure is vulnerable if a small damage can trigger a disproportionately large consequence and lead to a cascade of failure events or even collapse. The performance of structural vulnerability depends upon factors such as external loading condition and structural properties. As many of these factors are random in nature, it is necessary to develop a vulnerability assessment technique in the probabilistic domain. In this study, one such assessment framework is proposed for cable-stayed bridges. The framework consists of two stages of analysis: determining the probability of direct damage due to blast loads and assessing the subsequent probability of collapse due to component damage. In the first stage assessment, damage of the bridge component is defined as the exceedance of a predefined limit state such as displacement or yielding. The damage probability is obtained through a stochastic finite-element analysis and the first-order second-moment reliability method. The second stage assessment further calculates the probability of collapse due to direct damage of some component via an event tree approach. The proposed assessment methods are illustrated on a hypothetical single-tower cable-stayed bridge. It is seen that the proposed methods provide a quantitative tool for analyzing the vulnerability performance of cable-stayed bridges under terrorist attack.
    • Download: (246.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Vulnerability Assessment of Cable-Stayed Bridges in Probabilistic Domain

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/51195
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorD. Yan
    contributor authorC. C. Chang
    date accessioned2017-05-08T21:25:53Z
    date available2017-05-08T21:25:53Z
    date copyrightJuly 2009
    date issued2009
    identifier other%28asce%291084-0702%282009%2914%3A4%28270%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/51195
    description abstractVulnerability of a structure under terrorist attack can be regarded as the study of its behavior against blast-induced loads. A structure is vulnerable if a small damage can trigger a disproportionately large consequence and lead to a cascade of failure events or even collapse. The performance of structural vulnerability depends upon factors such as external loading condition and structural properties. As many of these factors are random in nature, it is necessary to develop a vulnerability assessment technique in the probabilistic domain. In this study, one such assessment framework is proposed for cable-stayed bridges. The framework consists of two stages of analysis: determining the probability of direct damage due to blast loads and assessing the subsequent probability of collapse due to component damage. In the first stage assessment, damage of the bridge component is defined as the exceedance of a predefined limit state such as displacement or yielding. The damage probability is obtained through a stochastic finite-element analysis and the first-order second-moment reliability method. The second stage assessment further calculates the probability of collapse due to direct damage of some component via an event tree approach. The proposed assessment methods are illustrated on a hypothetical single-tower cable-stayed bridge. It is seen that the proposed methods provide a quantitative tool for analyzing the vulnerability performance of cable-stayed bridges under terrorist attack.
    publisherAmerican Society of Civil Engineers
    titleVulnerability Assessment of Cable-Stayed Bridges in Probabilistic Domain
    typeJournal Paper
    journal volume14
    journal issue4
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)1084-0702(2009)14:4(270)
    treeJournal of Bridge Engineering:;2009:;Volume ( 014 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian