YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fatigue Behavior of Composite-Reinforced Glulam Bridge Girders

    Source: Journal of Bridge Engineering:;2008:;Volume ( 013 ):;issue: 002
    Author:
    William G. Davids
    ,
    Edwin Nagy
    ,
    Matthew C. Richie
    DOI: 10.1061/(ASCE)1084-0702(2008)13:2(183)
    Publisher: American Society of Civil Engineers
    Abstract: While composite-reinforced glulam beams have been used in several bridge demonstration projects, knowledge of their fatigue behavior is quite limited. In this study, the response of full- and partial-length fiberglass composite-reinforced glulam beams under fatigue cycling followed by quasi-static bending to failure is examined. To mimic anticipated in-service conditions, a hygrothermal cycling regime was developed that replicates the effective stress history of a 50-year service life with a 55-day period in a moisture-controlled kiln. In addition, some of the beams had initial delaminations introduced between the reinforcing and the wood similar to those observed in field investigations of reinforced glulam bridge girders. For the partial-length reinforced beams, reinforcing with both confined and unconfined ends was considered. The results of the postfatigue tests to failure were compared with the expected strength. In addition, the stiffness of the beams was monitored during the fatigue cycling. It was found that, with the exception of the unconfined, partial-length reinforced beams, all specimens had a residual strength that compared favorably with the expected strength. Further, neither the preconditioning nor the fatigue cycling had an appreciable impact on the stiffness of the reinforced beams. The unconfined, partial-length reinforced beams did not perform well under fatigue loading and do not seem to be a viable alternative for use as reinforced glulam bridge girders.
    • Download: (831.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fatigue Behavior of Composite-Reinforced Glulam Bridge Girders

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/51112
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorWilliam G. Davids
    contributor authorEdwin Nagy
    contributor authorMatthew C. Richie
    date accessioned2017-05-08T21:25:44Z
    date available2017-05-08T21:25:44Z
    date copyrightMarch 2008
    date issued2008
    identifier other%28asce%291084-0702%282008%2913%3A2%28183%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/51112
    description abstractWhile composite-reinforced glulam beams have been used in several bridge demonstration projects, knowledge of their fatigue behavior is quite limited. In this study, the response of full- and partial-length fiberglass composite-reinforced glulam beams under fatigue cycling followed by quasi-static bending to failure is examined. To mimic anticipated in-service conditions, a hygrothermal cycling regime was developed that replicates the effective stress history of a 50-year service life with a 55-day period in a moisture-controlled kiln. In addition, some of the beams had initial delaminations introduced between the reinforcing and the wood similar to those observed in field investigations of reinforced glulam bridge girders. For the partial-length reinforced beams, reinforcing with both confined and unconfined ends was considered. The results of the postfatigue tests to failure were compared with the expected strength. In addition, the stiffness of the beams was monitored during the fatigue cycling. It was found that, with the exception of the unconfined, partial-length reinforced beams, all specimens had a residual strength that compared favorably with the expected strength. Further, neither the preconditioning nor the fatigue cycling had an appreciable impact on the stiffness of the reinforced beams. The unconfined, partial-length reinforced beams did not perform well under fatigue loading and do not seem to be a viable alternative for use as reinforced glulam bridge girders.
    publisherAmerican Society of Civil Engineers
    titleFatigue Behavior of Composite-Reinforced Glulam Bridge Girders
    typeJournal Paper
    journal volume13
    journal issue2
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)1084-0702(2008)13:2(183)
    treeJournal of Bridge Engineering:;2008:;Volume ( 013 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian