YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    AASHTO-LRFD Live Load Distribution for Beam-and-Slab Bridges: Limitations and Applicability

    Source: Journal of Bridge Engineering:;2007:;Volume ( 012 ):;issue: 006
    Author:
    Zaher Yousif
    ,
    Riyadh Hindi
    DOI: 10.1061/(ASCE)1084-0702(2007)12:6(765)
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents a comparison between the live load distribution factors of simple span slab-on-girders concrete bridges based on the current AASHTO-LRFD and finite-element analysis. In this comparison, the range of applicability limits specified by the current AASHTO-LRFD is fully covered and investigated in terms of span length, slab thickness, girder spacing and longitudinal stiffness. All the AASHTO-PCI concrete girders (Types I–VI) are considered to cover the complete range of longitudinal stiffness specified in the AASHTO-LRFD. Several finite-elements linear elastic models were investigated to obtain the most accurate method to represent the bridge superstructure. The bridge deck was modeled as four-node quadrilateral shell elements, whereas the girders were modeled using two-node space frame elements. The live load used in the analysis is the vehicular load plus the standard lane load as specified by AASHTO-LRFD. The live load is positioned at the longitudinal location that produced the extreme effect, and then it is moved transversely across the bridge width in order to investigate all possibilities of one-lane, two-lane and three-lane design loads. A total of 886 bridge superstructure models were built and analyzed using the computer program SAP2000 to perform this comparison. The results of this study are presented in terms of figures to be practically useful to bridge engineers. This study showed that the AASHTO-LRFD may significantly overestimate the live load distribution factors compared to the finite-element analysis.
    • Download: (1.569Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      AASHTO-LRFD Live Load Distribution for Beam-and-Slab Bridges: Limitations and Applicability

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/51077
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorZaher Yousif
    contributor authorRiyadh Hindi
    date accessioned2017-05-08T21:25:40Z
    date available2017-05-08T21:25:40Z
    date copyrightNovember 2007
    date issued2007
    identifier other%28asce%291084-0702%282007%2912%3A6%28765%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/51077
    description abstractThis paper presents a comparison between the live load distribution factors of simple span slab-on-girders concrete bridges based on the current AASHTO-LRFD and finite-element analysis. In this comparison, the range of applicability limits specified by the current AASHTO-LRFD is fully covered and investigated in terms of span length, slab thickness, girder spacing and longitudinal stiffness. All the AASHTO-PCI concrete girders (Types I–VI) are considered to cover the complete range of longitudinal stiffness specified in the AASHTO-LRFD. Several finite-elements linear elastic models were investigated to obtain the most accurate method to represent the bridge superstructure. The bridge deck was modeled as four-node quadrilateral shell elements, whereas the girders were modeled using two-node space frame elements. The live load used in the analysis is the vehicular load plus the standard lane load as specified by AASHTO-LRFD. The live load is positioned at the longitudinal location that produced the extreme effect, and then it is moved transversely across the bridge width in order to investigate all possibilities of one-lane, two-lane and three-lane design loads. A total of 886 bridge superstructure models were built and analyzed using the computer program SAP2000 to perform this comparison. The results of this study are presented in terms of figures to be practically useful to bridge engineers. This study showed that the AASHTO-LRFD may significantly overestimate the live load distribution factors compared to the finite-element analysis.
    publisherAmerican Society of Civil Engineers
    titleAASHTO-LRFD Live Load Distribution for Beam-and-Slab Bridges: Limitations and Applicability
    typeJournal Paper
    journal volume12
    journal issue6
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)1084-0702(2007)12:6(765)
    treeJournal of Bridge Engineering:;2007:;Volume ( 012 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian