YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Live Load Distribution for Steel Girder Bridges

    Source: Journal of Bridge Engineering:;2001:;Volume ( 006 ):;issue: 006
    Author:
    Junsik Eom
    ,
    Andrzej S. Nowak
    DOI: 10.1061/(ASCE)1084-0702(2001)6:6(489)
    Publisher: American Society of Civil Engineers
    Abstract: This paper deals with distribution of truck load on girder bridges. Previous analytical studies based on finite-element method indicated that AASHTO code-specified girder distribution factors (GDFs) are inaccurate. In particular, GDFs appear to be conservative for longer spans and larger girder spacing, but too permissive for short spans and girder spacings. Therefore, a field testing program was carried out including about 20 steel girder bridges with spans up to 45 m. For each tested structure, GDFs were determined by measuring strains in the girders under heavy trucks. Test trucks were 11-axle vehicles, loaded to the legal limit in Michigan (over 650 kN). The strains were recorded for a single truck and for two trucks side-by-side. The tests were repeated for crawling speed and normal traffic speed for the location. In all tested bridges, the GDFs determined from the field measurements are lower than code-specified values. In addition, the considered bridges were analyzed using a commercial finite-element software package, ABAQUS. The analytical results were compared with those from field tests. It was observed that the maximum values of the strain and corresponding stress are lower than analytical values obtained using ABAQUS. The reason for this discrepancy is unintended composite action and partial fixity of supports (rather than simple supports).
    • Download: (408.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Live Load Distribution for Steel Girder Bridges

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/50580
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorJunsik Eom
    contributor authorAndrzej S. Nowak
    date accessioned2017-05-08T21:24:57Z
    date available2017-05-08T21:24:57Z
    date copyrightDecember 2001
    date issued2001
    identifier other%28asce%291084-0702%282001%296%3A6%28489%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/50580
    description abstractThis paper deals with distribution of truck load on girder bridges. Previous analytical studies based on finite-element method indicated that AASHTO code-specified girder distribution factors (GDFs) are inaccurate. In particular, GDFs appear to be conservative for longer spans and larger girder spacing, but too permissive for short spans and girder spacings. Therefore, a field testing program was carried out including about 20 steel girder bridges with spans up to 45 m. For each tested structure, GDFs were determined by measuring strains in the girders under heavy trucks. Test trucks were 11-axle vehicles, loaded to the legal limit in Michigan (over 650 kN). The strains were recorded for a single truck and for two trucks side-by-side. The tests were repeated for crawling speed and normal traffic speed for the location. In all tested bridges, the GDFs determined from the field measurements are lower than code-specified values. In addition, the considered bridges were analyzed using a commercial finite-element software package, ABAQUS. The analytical results were compared with those from field tests. It was observed that the maximum values of the strain and corresponding stress are lower than analytical values obtained using ABAQUS. The reason for this discrepancy is unintended composite action and partial fixity of supports (rather than simple supports).
    publisherAmerican Society of Civil Engineers
    titleLive Load Distribution for Steel Girder Bridges
    typeJournal Paper
    journal volume6
    journal issue6
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)1084-0702(2001)6:6(489)
    treeJournal of Bridge Engineering:;2001:;Volume ( 006 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian