YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling Water Treatment Chemical Disinfection Kinetics

    Source: Journal of Environmental Engineering:;1998:;Volume ( 124 ):;issue: 009
    Author:
    Lyndon L. Gyürék
    ,
    Gordon R. Finch
    DOI: 10.1061/(ASCE)0733-9372(1998)124:9(783)
    Publisher: American Society of Civil Engineers
    Abstract: Various empirical and probabilistic kinetic inactivation models that can be used to assist in the design and analysis of potable water disinfection systems were reviewed. Models were derived for both disinfectant demand-free and demand conditions. Ozone was used to inactivate heterotrophic plate count bacteria that were grown in natural water under low nutrient conditions and enumerated using R2A agar at 20°C for 7 days. Experiments were conducted at 22°C in 0.05 M (pH 6.9) phosphate buffer in bench-scale, batch 250 mL reactors. This disinfection data set, characterized by tailing-off behavior, was used to assess Chick–Watson, Hom-type, Rational, Hom–Power law, and Selleck model fit to the observed logarithmic survival ratios. It was found that the Chick–Watson model did not adequately represent the ozone disinfection kinetics. A Hom-type model incorporating a first-order disappearance term for ozone residual was found to best describe the observed inactivation of heterotrophic plate count bacteria. Named the incomplete gamma Hom model, it was found to be a robust kinetic model. The proposed incomplete gamma Hom model can be used to generate simple design charts for a wide range of disinfectant types, organisms, and conditions, as an aid to the design of water disinfection systems.
    • Download: (1.482Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling Water Treatment Chemical Disinfection Kinetics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/50464
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorLyndon L. Gyürék
    contributor authorGordon R. Finch
    date accessioned2017-05-08T21:24:45Z
    date available2017-05-08T21:24:45Z
    date copyrightSeptember 1998
    date issued1998
    identifier other%28asce%290733-9372%281998%29124%3A9%28783%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/50464
    description abstractVarious empirical and probabilistic kinetic inactivation models that can be used to assist in the design and analysis of potable water disinfection systems were reviewed. Models were derived for both disinfectant demand-free and demand conditions. Ozone was used to inactivate heterotrophic plate count bacteria that were grown in natural water under low nutrient conditions and enumerated using R2A agar at 20°C for 7 days. Experiments were conducted at 22°C in 0.05 M (pH 6.9) phosphate buffer in bench-scale, batch 250 mL reactors. This disinfection data set, characterized by tailing-off behavior, was used to assess Chick–Watson, Hom-type, Rational, Hom–Power law, and Selleck model fit to the observed logarithmic survival ratios. It was found that the Chick–Watson model did not adequately represent the ozone disinfection kinetics. A Hom-type model incorporating a first-order disappearance term for ozone residual was found to best describe the observed inactivation of heterotrophic plate count bacteria. Named the incomplete gamma Hom model, it was found to be a robust kinetic model. The proposed incomplete gamma Hom model can be used to generate simple design charts for a wide range of disinfectant types, organisms, and conditions, as an aid to the design of water disinfection systems.
    publisherAmerican Society of Civil Engineers
    titleModeling Water Treatment Chemical Disinfection Kinetics
    typeJournal Paper
    journal volume124
    journal issue9
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)0733-9372(1998)124:9(783)
    treeJournal of Environmental Engineering:;1998:;Volume ( 124 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian