YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Indicator Generalized Parameterization for Interpolation Point Selection in Groundwater Inverse Modeling

    Source: Journal of Hydrologic Engineering:;2009:;Volume ( 014 ):;issue: 003
    Author:
    Frank T.-C. Tsai
    DOI: 10.1061/(ASCE)1084-0699(2009)14:3(233)
    Publisher: American Society of Civil Engineers
    Abstract: This study developed an indicator generalized parameterization (IGP) method to cope with the problem of selecting interpolation points in estimating hydraulic conductivity fields. The IGP method introduced data indicators and d-neighborhoods to describe the actual contribution of sample data to unsampled locations. Moreover, the IGP method was applied to nonkriging basis functions to characterize spatially correlated hydraulic conductivity. This study used probabilistic data indicators to take into consideration the randomness and heterogeneity of hydraulic conductivity. The groundwater inverse method, along with an adjoint state method, was adopted to estimate the indicator probabilities. Then a cutoff was applied to determine the values of the data indicators for the IGP to estimate hydraulic conductivity. The numerical example validated the IGP and illustrated the significance of selecting interpolation points for hydraulic conductivity distributions. Further, the study demonstrated the IGP applicability to estimating hydraulic conductivity in the Alamitos Gap area, Calif. It was concluded that increasing the amount of data selected for interpolation results in smaller conditional variances, but causes the ensuing distribution to be smoother. However, smooth distributions of hydraulic conductivity may not be preferred. Proper selection of interpolation points can result in better hydraulic conductivity distributions for groundwater modeling purposes.
    • Download: (1.139Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Indicator Generalized Parameterization for Interpolation Point Selection in Groundwater Inverse Modeling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/50305
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorFrank T.-C. Tsai
    date accessioned2017-05-08T21:24:30Z
    date available2017-05-08T21:24:30Z
    date copyrightMarch 2009
    date issued2009
    identifier other%28asce%291084-0699%282009%2914%3A3%28233%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/50305
    description abstractThis study developed an indicator generalized parameterization (IGP) method to cope with the problem of selecting interpolation points in estimating hydraulic conductivity fields. The IGP method introduced data indicators and d-neighborhoods to describe the actual contribution of sample data to unsampled locations. Moreover, the IGP method was applied to nonkriging basis functions to characterize spatially correlated hydraulic conductivity. This study used probabilistic data indicators to take into consideration the randomness and heterogeneity of hydraulic conductivity. The groundwater inverse method, along with an adjoint state method, was adopted to estimate the indicator probabilities. Then a cutoff was applied to determine the values of the data indicators for the IGP to estimate hydraulic conductivity. The numerical example validated the IGP and illustrated the significance of selecting interpolation points for hydraulic conductivity distributions. Further, the study demonstrated the IGP applicability to estimating hydraulic conductivity in the Alamitos Gap area, Calif. It was concluded that increasing the amount of data selected for interpolation results in smaller conditional variances, but causes the ensuing distribution to be smoother. However, smooth distributions of hydraulic conductivity may not be preferred. Proper selection of interpolation points can result in better hydraulic conductivity distributions for groundwater modeling purposes.
    publisherAmerican Society of Civil Engineers
    titleIndicator Generalized Parameterization for Interpolation Point Selection in Groundwater Inverse Modeling
    typeJournal Paper
    journal volume14
    journal issue3
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)1084-0699(2009)14:3(233)
    treeJournal of Hydrologic Engineering:;2009:;Volume ( 014 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian