YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Development and Validation of GANN Model for Evapotranspiration Estimation

    Source: Journal of Hydrologic Engineering:;2009:;Volume ( 014 ):;issue: 002
    Author:
    M. Kumar
    ,
    N. S. Raghuwanshi
    ,
    R. Singh
    DOI: 10.1061/(ASCE)1084-0699(2009)14:2(131)
    Publisher: American Society of Civil Engineers
    Abstract: The present study was carried out to develop generalized artificial neural network (GANN) based reference crop evapotranspiration models corresponding to FAO-56 PM, FAO-24 Radiation, Turc, and FAO-24 Blaney–Criddle methods. The generalized ANN models were developed using the data from four California Irrigation Management Information System (CIMIS) stations, namely, Davis, Castroville, Mulberry, and West Side Field Station. The average weighted standard error of estimate (WSEE) for the developed models, namely, GANN (4-5-1), GANN (3-4-1), GANN (5-6-1), and GANN (6-7-1) corresponding to the FAO-24 Blaney–Criddle, FAO-24 Radiation, Turc, and FAO-56PM was 0.72, 0.85, 0.63, and
    • Download: (1.224Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Development and Validation of GANN Model for Evapotranspiration Estimation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/50291
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorM. Kumar
    contributor authorN. S. Raghuwanshi
    contributor authorR. Singh
    date accessioned2017-05-08T21:24:29Z
    date available2017-05-08T21:24:29Z
    date copyrightFebruary 2009
    date issued2009
    identifier other%28asce%291084-0699%282009%2914%3A2%28131%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/50291
    description abstractThe present study was carried out to develop generalized artificial neural network (GANN) based reference crop evapotranspiration models corresponding to FAO-56 PM, FAO-24 Radiation, Turc, and FAO-24 Blaney–Criddle methods. The generalized ANN models were developed using the data from four California Irrigation Management Information System (CIMIS) stations, namely, Davis, Castroville, Mulberry, and West Side Field Station. The average weighted standard error of estimate (WSEE) for the developed models, namely, GANN (4-5-1), GANN (3-4-1), GANN (5-6-1), and GANN (6-7-1) corresponding to the FAO-24 Blaney–Criddle, FAO-24 Radiation, Turc, and FAO-56PM was 0.72, 0.85, 0.63, and
    publisherAmerican Society of Civil Engineers
    titleDevelopment and Validation of GANN Model for Evapotranspiration Estimation
    typeJournal Paper
    journal volume14
    journal issue2
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)1084-0699(2009)14:2(131)
    treeJournal of Hydrologic Engineering:;2009:;Volume ( 014 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian