YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stochastic Residual-Error Analysis for Estimating Hydrologic Model Predictive Uncertainty

    Source: Journal of Hydrologic Engineering:;2008:;Volume ( 013 ):;issue: 007
    Author:
    Mohamed M. Hantush
    ,
    Latif Kalin
    DOI: 10.1061/(ASCE)1084-0699(2008)13:7(585)
    Publisher: American Society of Civil Engineers
    Abstract: A hybrid time series-nonparametric sampling approach, referred to herein as semiparametric, is presented for the estimation of model predictive uncertainty. The methodology is a two-step procedure whereby a distributed hydrologic model is first calibrated, then followed by brute force application of time series analysis with nonparametric random generation to synthesize serially correlated model residual errors. The methodology is applied to estimate uncertainties in simulated streamflows and related flow attributes upstream from the mouth of a rapidly urbanizing watershed. Two procedures for the estimation of model output uncertainty are compared: the Gaussian-based
    • Download: (419.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stochastic Residual-Error Analysis for Estimating Hydrologic Model Predictive Uncertainty

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/50222
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorMohamed M. Hantush
    contributor authorLatif Kalin
    date accessioned2017-05-08T21:24:22Z
    date available2017-05-08T21:24:22Z
    date copyrightJuly 2008
    date issued2008
    identifier other%28asce%291084-0699%282008%2913%3A7%28585%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/50222
    description abstractA hybrid time series-nonparametric sampling approach, referred to herein as semiparametric, is presented for the estimation of model predictive uncertainty. The methodology is a two-step procedure whereby a distributed hydrologic model is first calibrated, then followed by brute force application of time series analysis with nonparametric random generation to synthesize serially correlated model residual errors. The methodology is applied to estimate uncertainties in simulated streamflows and related flow attributes upstream from the mouth of a rapidly urbanizing watershed. Two procedures for the estimation of model output uncertainty are compared: the Gaussian-based
    publisherAmerican Society of Civil Engineers
    titleStochastic Residual-Error Analysis for Estimating Hydrologic Model Predictive Uncertainty
    typeJournal Paper
    journal volume13
    journal issue7
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)1084-0699(2008)13:7(585)
    treeJournal of Hydrologic Engineering:;2008:;Volume ( 013 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian