YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Response of Streamflow to Weather Variability under Climate Change in the Colorado Rockies

    Source: Journal of Hydrologic Engineering:;2007:;Volume ( 012 ):;issue: 001
    Author:
    Boosik Kang
    ,
    Jorge A. Ramírez
    DOI: 10.1061/(ASCE)1084-0699(2007)12:1(63)
    Publisher: American Society of Civil Engineers
    Abstract: We examine the response of streamflow to long-term rainfall variability under climate change by coupling downscaled global climate model precipitation to a distributed hydrologic model. We use daily output of the coupled global climate model (CGCM2) of the Canadian Centre for Climate Modelling and Analysis corresponding to the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios B2 scenario. The B2 scenario envisions slower population growth (10.4 billion by 2100) with a more rapidly evolving economy and more emphasis on environmental protection. We use the Hydrologic Modeling System of the Hydrologic Engineering Center for distributed hydrologic modeling. Because of the incongruence between the spatial scale of the CGCM2 output and that of the hydrologic model, a new space-time stochastic random cascade model was implemented in order to downscale the CGCM2 precipitation. The downscaling model accounts for the observed spatial intermittency of precipitation as well as for the self-similar scaling structure of its spatial distribution. For the South Platte basin, results show that the distribution of peak flow rate is more sensitive to the spatial variability of rainfall than total runoff volume. Results also show that the relative impact of long-term rainfall variation associated with climate change on total runoff and peak flow can be much greater than the magnitude of the rainfall variation itself, and that the magnitude of the impact depends strongly on the magnitude of the associated change in evapotranspiration.
    • Download: (413.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Response of Streamflow to Weather Variability under Climate Change in the Colorado Rockies

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/50014
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorBoosik Kang
    contributor authorJorge A. Ramírez
    date accessioned2017-05-08T21:24:02Z
    date available2017-05-08T21:24:02Z
    date copyrightJanuary 2007
    date issued2007
    identifier other%28asce%291084-0699%282007%2912%3A1%2863%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/50014
    description abstractWe examine the response of streamflow to long-term rainfall variability under climate change by coupling downscaled global climate model precipitation to a distributed hydrologic model. We use daily output of the coupled global climate model (CGCM2) of the Canadian Centre for Climate Modelling and Analysis corresponding to the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios B2 scenario. The B2 scenario envisions slower population growth (10.4 billion by 2100) with a more rapidly evolving economy and more emphasis on environmental protection. We use the Hydrologic Modeling System of the Hydrologic Engineering Center for distributed hydrologic modeling. Because of the incongruence between the spatial scale of the CGCM2 output and that of the hydrologic model, a new space-time stochastic random cascade model was implemented in order to downscale the CGCM2 precipitation. The downscaling model accounts for the observed spatial intermittency of precipitation as well as for the self-similar scaling structure of its spatial distribution. For the South Platte basin, results show that the distribution of peak flow rate is more sensitive to the spatial variability of rainfall than total runoff volume. Results also show that the relative impact of long-term rainfall variation associated with climate change on total runoff and peak flow can be much greater than the magnitude of the rainfall variation itself, and that the magnitude of the impact depends strongly on the magnitude of the associated change in evapotranspiration.
    publisherAmerican Society of Civil Engineers
    titleResponse of Streamflow to Weather Variability under Climate Change in the Colorado Rockies
    typeJournal Paper
    journal volume12
    journal issue1
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)1084-0699(2007)12:1(63)
    treeJournal of Hydrologic Engineering:;2007:;Volume ( 012 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian