YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Linkages between Regional Trends in Monthly Maximum Flows and Selected Climatic Variables

    Source: Journal of Hydrologic Engineering:;2004:;Volume ( 009 ):;issue: 004
    Author:
    Juraj M. Cunderlik
    ,
    Donald H. Burn
    DOI: 10.1061/(ASCE)1084-0699(2004)9:4(246)
    Publisher: American Society of Civil Engineers
    Abstract: The potential impact of climate change on the hydrologic regime is a crucial question for water resources management. This study explores regional trends in monthly maximum flows and their possible linkages to trends in selected climatic variables in a hydroclimatologically homogeneous region. Trends are identified using the Mann-Kendall nonparametric test, with a modification for autocorrelated data. The regional significance of trends identified at the local scale is evaluated by means of a regional bootstrap algorithm. A trend significance index that accounts for both local and regional significance levels is proposed as a convenient tool for quantification and visual comparison of different trend results. The index is also used for identifying potential linkages between trends in hydroclimatic records. The plausibility of identified linkages is explored by means of cross-correlation analysis applied on residuals that are obtained from the original records after subtracting all serially dependent components. An uncertainty in regional trend analysis resulting from different observation periods is presented and quantified by calculating trend significance indices for several scenarios of different locations and lengths of a common observation period shifted on a timescale. The results show significant changes in the intraannual flood regime in the case study area of southern British Columbia. A regionally, strongly significant increase in the spring air temperature shifts the timing of the snowmelt process, resulting in a significant increase in early spring maximum flows and a significant decrease in late spring maximum flows. An autumn decrease in flows is related to increasing air temperature in the preceding summer months, which tends to dry out catchments more intensively, and is also related to precipitation activity in the previous months. The regional trend results are highly sensitive to the location and length of a given regional observation period on a timescale. Possible sources of the uncertainty in a low frequency climatic variability such as the Pacific Decadal Oscillation are discussed.
    • Download: (234.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Linkages between Regional Trends in Monthly Maximum Flows and Selected Climatic Variables

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/49784
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorJuraj M. Cunderlik
    contributor authorDonald H. Burn
    date accessioned2017-05-08T21:23:45Z
    date available2017-05-08T21:23:45Z
    date copyrightJuly 2004
    date issued2004
    identifier other%28asce%291084-0699%282004%299%3A4%28246%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/49784
    description abstractThe potential impact of climate change on the hydrologic regime is a crucial question for water resources management. This study explores regional trends in monthly maximum flows and their possible linkages to trends in selected climatic variables in a hydroclimatologically homogeneous region. Trends are identified using the Mann-Kendall nonparametric test, with a modification for autocorrelated data. The regional significance of trends identified at the local scale is evaluated by means of a regional bootstrap algorithm. A trend significance index that accounts for both local and regional significance levels is proposed as a convenient tool for quantification and visual comparison of different trend results. The index is also used for identifying potential linkages between trends in hydroclimatic records. The plausibility of identified linkages is explored by means of cross-correlation analysis applied on residuals that are obtained from the original records after subtracting all serially dependent components. An uncertainty in regional trend analysis resulting from different observation periods is presented and quantified by calculating trend significance indices for several scenarios of different locations and lengths of a common observation period shifted on a timescale. The results show significant changes in the intraannual flood regime in the case study area of southern British Columbia. A regionally, strongly significant increase in the spring air temperature shifts the timing of the snowmelt process, resulting in a significant increase in early spring maximum flows and a significant decrease in late spring maximum flows. An autumn decrease in flows is related to increasing air temperature in the preceding summer months, which tends to dry out catchments more intensively, and is also related to precipitation activity in the previous months. The regional trend results are highly sensitive to the location and length of a given regional observation period on a timescale. Possible sources of the uncertainty in a low frequency climatic variability such as the Pacific Decadal Oscillation are discussed.
    publisherAmerican Society of Civil Engineers
    titleLinkages between Regional Trends in Monthly Maximum Flows and Selected Climatic Variables
    typeJournal Paper
    journal volume9
    journal issue4
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)1084-0699(2004)9:4(246)
    treeJournal of Hydrologic Engineering:;2004:;Volume ( 009 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian