YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Neural Networks for Agrichemical Vulnerability Assessment of Rural Private Wells

    Source: Journal of Hydrologic Engineering:;2000:;Volume ( 005 ):;issue: 002
    Author:
    Chittaranjan Ray
    ,
    Kris K. Klindworth
    DOI: 10.1061/(ASCE)1084-0699(2000)5:2(162)
    Publisher: American Society of Civil Engineers
    Abstract: Assessment of pesticide and nitrate contamination of rural private wells was conducted using artificial neural networks. Data from 192 drilled and driven wells and 115 large-diameter dug and bored wells, available from two earlier studies, were used for training and testing purposes. Four separate models, two for the two well types and one each for pesticide and nitrate, were developed. Parameters such as depth to aquifer material from land surface, well depth, and distance to cropland were used as input parameters, and the concentrations of nitrate or pesticides were the outputs. While the training efficiency of the network reached between 95 and 100% for these four models, the prediction accuracy for the four models ranged from a low of slightly above 50% for nitrate in dug and bored wells to a high of 90% for pesticides in drilled and driven wells. Sensitivity analyses were performed to examine the impact of network architecture, training and testing parameters, and the size and type of input parameters on model predictions. Multiple hidden layers with a large number of nodes did not appear to have a significant impact on model predictions in two of the four models. The relative importance of input parameters was tested by adding or removing certain key parameters to the model, and it was observed that the parameters had a different impact on drilled/driven versus dug/bored wells.
    • Download: (150.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Neural Networks for Agrichemical Vulnerability Assessment of Rural Private Wells

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/49513
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorChittaranjan Ray
    contributor authorKris K. Klindworth
    date accessioned2017-05-08T21:23:20Z
    date available2017-05-08T21:23:20Z
    date copyrightApril 2000
    date issued2000
    identifier other%28asce%291084-0699%282000%295%3A2%28162%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/49513
    description abstractAssessment of pesticide and nitrate contamination of rural private wells was conducted using artificial neural networks. Data from 192 drilled and driven wells and 115 large-diameter dug and bored wells, available from two earlier studies, were used for training and testing purposes. Four separate models, two for the two well types and one each for pesticide and nitrate, were developed. Parameters such as depth to aquifer material from land surface, well depth, and distance to cropland were used as input parameters, and the concentrations of nitrate or pesticides were the outputs. While the training efficiency of the network reached between 95 and 100% for these four models, the prediction accuracy for the four models ranged from a low of slightly above 50% for nitrate in dug and bored wells to a high of 90% for pesticides in drilled and driven wells. Sensitivity analyses were performed to examine the impact of network architecture, training and testing parameters, and the size and type of input parameters on model predictions. Multiple hidden layers with a large number of nodes did not appear to have a significant impact on model predictions in two of the four models. The relative importance of input parameters was tested by adding or removing certain key parameters to the model, and it was observed that the parameters had a different impact on drilled/driven versus dug/bored wells.
    publisherAmerican Society of Civil Engineers
    titleNeural Networks for Agrichemical Vulnerability Assessment of Rural Private Wells
    typeJournal Paper
    journal volume5
    journal issue2
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)1084-0699(2000)5:2(162)
    treeJournal of Hydrologic Engineering:;2000:;Volume ( 005 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian