YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Transitioning from AASHTO T283 to the Simple Performance Test Using Moisture Conditioning

    Source: Journal of Materials in Civil Engineering:;2009:;Volume ( 021 ):;issue: 002
    Author:
    Jason Bausano
    ,
    R. Christopher Williams
    DOI: 10.1061/(ASCE)0899-1561(2009)21:2(73)
    Publisher: American Society of Civil Engineers
    Abstract: The current method of determining the moisture susceptibility of asphalt concrete mixtures is American Association of State Highway and Transportation Officials (AASHTO) T283. AASHTO T283 is based on the Marshall mix design method, however the current state of the practice for an asphalt concrete mixture design is the Superpave mix design method. There has not been a transition in test procedure from Marshall mix design to Superpave mix design in that Superpave adopted AASHTO T283 to evaluate the moisture susceptibility of asphalt concrete mixtures even though it was based on Marshall mix design. The procedures in AASHTO T283 and National Cooperative Highway Research Program (NCHRP) Report 444 consider the loss of strength due to freeze/thaw cycling and the effects of moisture existing in specimens compared to unconditioned specimens. Current research (NCHRP Project 9-34) is considering the use of a modified environmental conditioning system (ECS) with dynamic complex modulus testing. However, mixtures do not experience such a pure phenomenon. Pavements undergo cycling of environmental conditions, but when moisture is present, there is repeated hydraulic loading with development of pore pressure in mixtures. Thus, AASHTO T283 and NCHRP Report 444 do not consider the effect of pore pressure, but rather consider a single load effect on environmentally conditioned specimens. The test procedure proposed in this paper uses a retained dynamic modulus of 60% of conditioned specimens to unconditioned specimens. This initial criterion was derived as it is the same percentage of mixtures that fail the AASHTO T283 criteria (80%) of the 21 field mixes that were sampled. Comparison of mixtures performance ranked via AASHTO T283 and the proposed retained dynamic modulus criteria results in considerably different rankings. Pavements undergo cycling of environmental conditions, but when moisture is present, there is repeated hydraulic loading with the development of pore pressure in mixtures. Thus, the results of this testing can be input into the AASHTO
    • Download: (418.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Transitioning from AASHTO T283 to the Simple Performance Test Using Moisture Conditioning

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/46515
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorJason Bausano
    contributor authorR. Christopher Williams
    date accessioned2017-05-08T21:18:36Z
    date available2017-05-08T21:18:36Z
    date copyrightFebruary 2009
    date issued2009
    identifier other%28asce%290899-1561%282009%2921%3A2%2873%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/46515
    description abstractThe current method of determining the moisture susceptibility of asphalt concrete mixtures is American Association of State Highway and Transportation Officials (AASHTO) T283. AASHTO T283 is based on the Marshall mix design method, however the current state of the practice for an asphalt concrete mixture design is the Superpave mix design method. There has not been a transition in test procedure from Marshall mix design to Superpave mix design in that Superpave adopted AASHTO T283 to evaluate the moisture susceptibility of asphalt concrete mixtures even though it was based on Marshall mix design. The procedures in AASHTO T283 and National Cooperative Highway Research Program (NCHRP) Report 444 consider the loss of strength due to freeze/thaw cycling and the effects of moisture existing in specimens compared to unconditioned specimens. Current research (NCHRP Project 9-34) is considering the use of a modified environmental conditioning system (ECS) with dynamic complex modulus testing. However, mixtures do not experience such a pure phenomenon. Pavements undergo cycling of environmental conditions, but when moisture is present, there is repeated hydraulic loading with development of pore pressure in mixtures. Thus, AASHTO T283 and NCHRP Report 444 do not consider the effect of pore pressure, but rather consider a single load effect on environmentally conditioned specimens. The test procedure proposed in this paper uses a retained dynamic modulus of 60% of conditioned specimens to unconditioned specimens. This initial criterion was derived as it is the same percentage of mixtures that fail the AASHTO T283 criteria (80%) of the 21 field mixes that were sampled. Comparison of mixtures performance ranked via AASHTO T283 and the proposed retained dynamic modulus criteria results in considerably different rankings. Pavements undergo cycling of environmental conditions, but when moisture is present, there is repeated hydraulic loading with the development of pore pressure in mixtures. Thus, the results of this testing can be input into the AASHTO
    publisherAmerican Society of Civil Engineers
    titleTransitioning from AASHTO T283 to the Simple Performance Test Using Moisture Conditioning
    typeJournal Paper
    journal volume21
    journal issue2
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)0899-1561(2009)21:2(73)
    treeJournal of Materials in Civil Engineering:;2009:;Volume ( 021 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian