YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Three-Phase Composite Sphere Model for the Prediction of Chloride Diffusivity of Concrete

    Source: Journal of Materials in Civil Engineering:;2008:;Volume ( 020 ):;issue: 003
    Author:
    Jianjun Zheng
    ,
    Xinzhu Zhou
    DOI: 10.1061/(ASCE)0899-1561(2008)20:3(205)
    Publisher: American Society of Civil Engineers
    Abstract: In predicting the chloride diffusivity of concrete as a three-phase material, the morphological characteristics of the three phases, the physical properties of each phase constituent material, and the interactions of the three phases in the concrete matrix should all be taken into account. The present paper attempts to develop an analytical method to achieve this. A three-phase composite sphere model for the concrete matrix is proposed to represent the heterogeneous nature of concrete and a closed form solution for the chloride diffusivity of concrete is derived. After verifying the derived closed form solution with experimental results, the effects of key factors that affect the chloride diffusivity of concrete, namely the chloride diffusivity and thickness of the interfacial transition zone (ITZ), the maximum aggregate diameter, and the aggregate gradation are examined in a quantitative manner. It is found in the paper that the most important factor influencing the chloride diffusivity of concrete is the chloride diffusivity of ITZ. When the aggregate volume fraction is equal to 0.8, the relative chloride diffusivity of concrete to cement paste for a given relative chloride diffusivity of ITZ to cement paste at 10 is almost four times that for a given relative chloride diffusivity of ITZ to cement paste at 2. The second most important factor is the thickness of ITZ. When the aggregate volume fraction is equal to 0.8, the relative chloride diffusivity of concrete to cement paste for a given ITZ thickness at
    • Download: (148.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Three-Phase Composite Sphere Model for the Prediction of Chloride Diffusivity of Concrete

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/46405
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorJianjun Zheng
    contributor authorXinzhu Zhou
    date accessioned2017-05-08T21:18:29Z
    date available2017-05-08T21:18:29Z
    date copyrightMarch 2008
    date issued2008
    identifier other%28asce%290899-1561%282008%2920%3A3%28205%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/46405
    description abstractIn predicting the chloride diffusivity of concrete as a three-phase material, the morphological characteristics of the three phases, the physical properties of each phase constituent material, and the interactions of the three phases in the concrete matrix should all be taken into account. The present paper attempts to develop an analytical method to achieve this. A three-phase composite sphere model for the concrete matrix is proposed to represent the heterogeneous nature of concrete and a closed form solution for the chloride diffusivity of concrete is derived. After verifying the derived closed form solution with experimental results, the effects of key factors that affect the chloride diffusivity of concrete, namely the chloride diffusivity and thickness of the interfacial transition zone (ITZ), the maximum aggregate diameter, and the aggregate gradation are examined in a quantitative manner. It is found in the paper that the most important factor influencing the chloride diffusivity of concrete is the chloride diffusivity of ITZ. When the aggregate volume fraction is equal to 0.8, the relative chloride diffusivity of concrete to cement paste for a given relative chloride diffusivity of ITZ to cement paste at 10 is almost four times that for a given relative chloride diffusivity of ITZ to cement paste at 2. The second most important factor is the thickness of ITZ. When the aggregate volume fraction is equal to 0.8, the relative chloride diffusivity of concrete to cement paste for a given ITZ thickness at
    publisherAmerican Society of Civil Engineers
    titleThree-Phase Composite Sphere Model for the Prediction of Chloride Diffusivity of Concrete
    typeJournal Paper
    journal volume20
    journal issue3
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)0899-1561(2008)20:3(205)
    treeJournal of Materials in Civil Engineering:;2008:;Volume ( 020 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian