YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Neural Network Model for Asphalt Concrete Permeability

    Source: Journal of Materials in Civil Engineering:;2005:;Volume ( 017 ):;issue: 001
    Author:
    Rafiqul Alam Tarefder
    ,
    Luther White
    ,
    Musharraf Zaman
    DOI: 10.1061/(ASCE)0899-1561(2005)17:1(19)
    Publisher: American Society of Civil Engineers
    Abstract: In this study, a four-layer feed-forward neural network is constructed and applied to determine a mapping associating mix design and testing factors of asphalt concrete samples with their performance in conductance to flow or permeability. To generate data for the neural network model, a total of 100 field cores from 50 different mixes (two replicate cores per mix) are tested in the laboratory for permeability and mix volumetric properties. The significant factors that affect asphalt permeability are identified using simple and multiple regression analysis. The analyses results show that permeability of an asphalt concrete is affected mainly by five factors: (1) air void
    • Download: (252.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Neural Network Model for Asphalt Concrete Permeability

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/46000
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorRafiqul Alam Tarefder
    contributor authorLuther White
    contributor authorMusharraf Zaman
    date accessioned2017-05-08T21:17:46Z
    date available2017-05-08T21:17:46Z
    date copyrightFebruary 2005
    date issued2005
    identifier other%28asce%290899-1561%282005%2917%3A1%2819%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/46000
    description abstractIn this study, a four-layer feed-forward neural network is constructed and applied to determine a mapping associating mix design and testing factors of asphalt concrete samples with their performance in conductance to flow or permeability. To generate data for the neural network model, a total of 100 field cores from 50 different mixes (two replicate cores per mix) are tested in the laboratory for permeability and mix volumetric properties. The significant factors that affect asphalt permeability are identified using simple and multiple regression analysis. The analyses results show that permeability of an asphalt concrete is affected mainly by five factors: (1) air void
    publisherAmerican Society of Civil Engineers
    titleNeural Network Model for Asphalt Concrete Permeability
    typeJournal Paper
    journal volume17
    journal issue1
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)0899-1561(2005)17:1(19)
    treeJournal of Materials in Civil Engineering:;2005:;Volume ( 017 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian