YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Application of Coal Ash in Fluidized Thermal Beds

    Source: Journal of Materials in Civil Engineering:;2002:;Volume ( 014 ):;issue: 005
    Author:
    Prabir K. Kolay
    ,
    Devendra N. Singh
    DOI: 10.1061/(ASCE)0899-1561(2002)14:5(441)
    Publisher: American Society of Civil Engineers
    Abstract: Thermal properties of soils are of great importance in view of the subsurface transmission of either heated fluids or high power currents. Fine-grained soils, in particular clays, pose a serious problem for conduction of heat due to very high thermal resistivity. As such, it becomes mandatory to devise a mechanism by which thermal resistivity of fine-grained soils may be reduced. An engineered backfill, with suitable thermal properties, is adopted frequently to reduce thermal resistivity of these soils. The potential of coal ash (i.e., in the form of either fly ash or lagoon ash) as a suitable backfill material, when mixed with cement, sand, and aggregates, has been explored by several researchers and is well established. However, with increasing amounts of lagoon ash being disposed of at thermal power plants, it is important to study its effectiveness as a fluidizing agent and its use in designing a proper fluidized thermal bed (FTB). Based on laboratory tests on different soils, generalized equations for estimating soil thermal resistivity have been developed in the recent past. These equations have been used for obtaining the optimum quantity of the lagoon ash for designing a fluidized thermal bed. Effect of moisture content and compaction density on thermal resistivity of different FTB compositions has also been studied.
    • Download: (56.46Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Application of Coal Ash in Fluidized Thermal Beds

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/45801
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorPrabir K. Kolay
    contributor authorDevendra N. Singh
    date accessioned2017-05-08T21:17:27Z
    date available2017-05-08T21:17:27Z
    date copyrightOctober 2002
    date issued2002
    identifier other%28asce%290899-1561%282002%2914%3A5%28441%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/45801
    description abstractThermal properties of soils are of great importance in view of the subsurface transmission of either heated fluids or high power currents. Fine-grained soils, in particular clays, pose a serious problem for conduction of heat due to very high thermal resistivity. As such, it becomes mandatory to devise a mechanism by which thermal resistivity of fine-grained soils may be reduced. An engineered backfill, with suitable thermal properties, is adopted frequently to reduce thermal resistivity of these soils. The potential of coal ash (i.e., in the form of either fly ash or lagoon ash) as a suitable backfill material, when mixed with cement, sand, and aggregates, has been explored by several researchers and is well established. However, with increasing amounts of lagoon ash being disposed of at thermal power plants, it is important to study its effectiveness as a fluidizing agent and its use in designing a proper fluidized thermal bed (FTB). Based on laboratory tests on different soils, generalized equations for estimating soil thermal resistivity have been developed in the recent past. These equations have been used for obtaining the optimum quantity of the lagoon ash for designing a fluidized thermal bed. Effect of moisture content and compaction density on thermal resistivity of different FTB compositions has also been studied.
    publisherAmerican Society of Civil Engineers
    titleApplication of Coal Ash in Fluidized Thermal Beds
    typeJournal Paper
    journal volume14
    journal issue5
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)0899-1561(2002)14:5(441)
    treeJournal of Materials in Civil Engineering:;2002:;Volume ( 014 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian