YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Triaxial Tests of Fiber-Reinforced Concrete

    Source: Journal of Materials in Civil Engineering:;2001:;Volume ( 013 ):;issue: 005
    Author:
    S. J. Pantazopoulou
    ,
    M. Zanganeh
    DOI: 10.1061/(ASCE)0899-1561(2001)13:5(340)
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents results of an extensive experimental parametric study of the mechanical response of various types of fiber-reinforced concrete tested under triaxial stress combinations. The objective of this study was to characterize the constitutive properties of these materials, with respect to fiber type and content, load path, condition at testing, and specimen size. A total of 250 tests were done on cylindrical specimens made of concretes with fiber contents (volumetric ratio): (1) steel microfiber, 1 and 2%; (2) mix of steel microfiber and long hooked steel fiber, 1 and 2%; (3) polypropylene fiber, 1.5 and 4%; and (4) mix of steel microfiber and polypropylene fiber, 2.5 and 5%. Triaxial stresses were applied either by hydraulic pressure or by means of passive confinement. In the latter procedure, lateral stress was provided by means of carbon fiber reinforced polymer jackets, wrapped to a fixed number of layers. Parameters of this component of the test program were (1) the number of wrap layers (one, two, or three); and (2) specimen size (two sizes were considered). Experimental results were used to quantify the relative influences induced by the various fiber additives and document the effectiveness of confinement provided by carbon fiber reinforced polymer wraps in comparison with actively applied lateral pressure. By mixing fibers of drastically different lengths, changes were effected both on the microstructure of the cement paste (by increasing its toughness) and on the macroscopic structure of concrete, thereby increasing the postpeak deformability and ductility of the material.
    • Download: (158.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Triaxial Tests of Fiber-Reinforced Concrete

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/45715
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorS. J. Pantazopoulou
    contributor authorM. Zanganeh
    date accessioned2017-05-08T21:17:18Z
    date available2017-05-08T21:17:18Z
    date copyrightOctober 2001
    date issued2001
    identifier other%28asce%290899-1561%282001%2913%3A5%28340%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/45715
    description abstractThis paper presents results of an extensive experimental parametric study of the mechanical response of various types of fiber-reinforced concrete tested under triaxial stress combinations. The objective of this study was to characterize the constitutive properties of these materials, with respect to fiber type and content, load path, condition at testing, and specimen size. A total of 250 tests were done on cylindrical specimens made of concretes with fiber contents (volumetric ratio): (1) steel microfiber, 1 and 2%; (2) mix of steel microfiber and long hooked steel fiber, 1 and 2%; (3) polypropylene fiber, 1.5 and 4%; and (4) mix of steel microfiber and polypropylene fiber, 2.5 and 5%. Triaxial stresses were applied either by hydraulic pressure or by means of passive confinement. In the latter procedure, lateral stress was provided by means of carbon fiber reinforced polymer jackets, wrapped to a fixed number of layers. Parameters of this component of the test program were (1) the number of wrap layers (one, two, or three); and (2) specimen size (two sizes were considered). Experimental results were used to quantify the relative influences induced by the various fiber additives and document the effectiveness of confinement provided by carbon fiber reinforced polymer wraps in comparison with actively applied lateral pressure. By mixing fibers of drastically different lengths, changes were effected both on the microstructure of the cement paste (by increasing its toughness) and on the macroscopic structure of concrete, thereby increasing the postpeak deformability and ductility of the material.
    publisherAmerican Society of Civil Engineers
    titleTriaxial Tests of Fiber-Reinforced Concrete
    typeJournal Paper
    journal volume13
    journal issue5
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)0899-1561(2001)13:5(340)
    treeJournal of Materials in Civil Engineering:;2001:;Volume ( 013 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian