YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fatigue Behavior of Fiber-Reinforced Recycled Aggregate Base Course

    Source: Journal of Materials in Civil Engineering:;1999:;Volume ( 011 ):;issue: 002
    Author:
    Khaled Sobhan
    ,
    Raymond J. Krizek
    DOI: 10.1061/(ASCE)0899-1561(1999)11:2(124)
    Publisher: American Society of Civil Engineers
    Abstract: An experimental investigation was undertaken to study the flexural fatigue behavior of a stabilized fiber-reinforced pavement base course material composed largely of recycled concrete aggregate with small amounts of portland cement and fly ash. The primary objectives of this endeavor were (1) to evaluate the fatigue resistance of this material; and (2) to determine the extent to which a modest amount of reinforcing fibers (4% by dry weight) can improve the flexural fatigue behavior of this lean cementitious composite. In addition to the repeated load tests, a separate series of static flexural tests and a series of compressive and flexural tests (using notched specimens) were conducted on pieces of failed beams to establish strength correlations to better estimate the static strengths of the specimens; this strength was used to determine the final stress ratio for each beam. The data obtained from this test program showed that a stabilized base course material consisting primarily of recycled aggregate with only 4% cement and 4% fly ash (by weight) has a fatigue strength and endurance limit comparable to virtually all typical stabilized highway materials. The inclusion of 4% (by weight) hooked-end steel fibers significantly improves this material's resistance to fatigue failure. In general, the results of this investigation suggest that a recycled aggregate composite consisting primarily of waste materials has significant promise as a base course for highway pavements.
    • Download: (135.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fatigue Behavior of Fiber-Reinforced Recycled Aggregate Base Course

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/45573
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorKhaled Sobhan
    contributor authorRaymond J. Krizek
    date accessioned2017-05-08T21:17:07Z
    date available2017-05-08T21:17:07Z
    date copyrightMay 1999
    date issued1999
    identifier other%28asce%290899-1561%281999%2911%3A2%28124%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/45573
    description abstractAn experimental investigation was undertaken to study the flexural fatigue behavior of a stabilized fiber-reinforced pavement base course material composed largely of recycled concrete aggregate with small amounts of portland cement and fly ash. The primary objectives of this endeavor were (1) to evaluate the fatigue resistance of this material; and (2) to determine the extent to which a modest amount of reinforcing fibers (4% by dry weight) can improve the flexural fatigue behavior of this lean cementitious composite. In addition to the repeated load tests, a separate series of static flexural tests and a series of compressive and flexural tests (using notched specimens) were conducted on pieces of failed beams to establish strength correlations to better estimate the static strengths of the specimens; this strength was used to determine the final stress ratio for each beam. The data obtained from this test program showed that a stabilized base course material consisting primarily of recycled aggregate with only 4% cement and 4% fly ash (by weight) has a fatigue strength and endurance limit comparable to virtually all typical stabilized highway materials. The inclusion of 4% (by weight) hooked-end steel fibers significantly improves this material's resistance to fatigue failure. In general, the results of this investigation suggest that a recycled aggregate composite consisting primarily of waste materials has significant promise as a base course for highway pavements.
    publisherAmerican Society of Civil Engineers
    titleFatigue Behavior of Fiber-Reinforced Recycled Aggregate Base Course
    typeJournal Paper
    journal volume11
    journal issue2
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)0899-1561(1999)11:2(124)
    treeJournal of Materials in Civil Engineering:;1999:;Volume ( 011 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian