YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Rate Sensitivity of Asphalt Concrete in Triaxial Compression

    Source: Journal of Materials in Civil Engineering:;1997:;Volume ( 009 ):;issue: 002
    Author:
    J. R. Kim
    ,
    A. Drescher
    ,
    D. E. Newcomb
    DOI: 10.1061/(ASCE)0899-1561(1997)9:2(76)
    Publisher: American Society of Civil Engineers
    Abstract: There is ample evidence based on uniaxial (unconfined) compression that asphalt concrete exhibits behavior that depends on the loading or straining rate. This paper describes the results of an experimental program aimed at investigating rate sensitivity of asphalt concrete in a more general stress state, namely, in triaxial (axisymmetric) compression. Laboratory compacted specimens were subjected to three loading histories: (1) constant load (static creep); (2) repeated constant load (repeated static creep); and (3) haversine load (dynamic creep). The creep and repeated creep test programs allowed for separating the hydrostatic and the deviatoric response, and the contribution of the elastic, viscous, and plastic properties in the overall response. The haversine tests concentrated on the deviatoric response, and were conducted to investigate the influence of load frequency and number of cycles. The creep results show small deviator-induced dilation that is nearly fully recoverable during the rest period, and which, in some applications, can be neglected or approximated by an elastic response. The deviatoric response, on the other hand, is not recoverable, and can be modeled as a sum of elastic, plastic, viscoelastic, and viscoplastic strains, all being linear functions of the deviator stress. Similar behavior was observed in repeated creep tests. The response to haversine loading can be separated into a response close to that observed in creep tests and, beyond initial transient response, into a linearly viscoelastic harmonic response. It was found that power laws accurately describe the time-dependent deviatoric strains.
    • Download: (1.065Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Rate Sensitivity of Asphalt Concrete in Triaxial Compression

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/45494
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorJ. R. Kim
    contributor authorA. Drescher
    contributor authorD. E. Newcomb
    date accessioned2017-05-08T21:16:58Z
    date available2017-05-08T21:16:58Z
    date copyrightMay 1997
    date issued1997
    identifier other%28asce%290899-1561%281997%299%3A2%2876%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/45494
    description abstractThere is ample evidence based on uniaxial (unconfined) compression that asphalt concrete exhibits behavior that depends on the loading or straining rate. This paper describes the results of an experimental program aimed at investigating rate sensitivity of asphalt concrete in a more general stress state, namely, in triaxial (axisymmetric) compression. Laboratory compacted specimens were subjected to three loading histories: (1) constant load (static creep); (2) repeated constant load (repeated static creep); and (3) haversine load (dynamic creep). The creep and repeated creep test programs allowed for separating the hydrostatic and the deviatoric response, and the contribution of the elastic, viscous, and plastic properties in the overall response. The haversine tests concentrated on the deviatoric response, and were conducted to investigate the influence of load frequency and number of cycles. The creep results show small deviator-induced dilation that is nearly fully recoverable during the rest period, and which, in some applications, can be neglected or approximated by an elastic response. The deviatoric response, on the other hand, is not recoverable, and can be modeled as a sum of elastic, plastic, viscoelastic, and viscoplastic strains, all being linear functions of the deviator stress. Similar behavior was observed in repeated creep tests. The response to haversine loading can be separated into a response close to that observed in creep tests and, beyond initial transient response, into a linearly viscoelastic harmonic response. It was found that power laws accurately describe the time-dependent deviatoric strains.
    publisherAmerican Society of Civil Engineers
    titleRate Sensitivity of Asphalt Concrete in Triaxial Compression
    typeJournal Paper
    journal volume9
    journal issue2
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)0899-1561(1997)9:2(76)
    treeJournal of Materials in Civil Engineering:;1997:;Volume ( 009 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian