YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Construction of Customized Mass-Stiffness Pairs Using Templates

    Source: Journal of Aerospace Engineering:;2006:;Volume ( 019 ):;issue: 004
    Author:
    Carlos A. Felippa
    DOI: 10.1061/(ASCE)0893-1321(2006)19:4(241)
    Publisher: American Society of Civil Engineers
    Abstract: This paper is a tutorial exposition of the template approach to the construction of customized mass-stiffness pairs for selected applications in structural dynamics. The exposition focuses on adjusting the mass matrix while a separately provided stiffness matrix is kept fixed. Two well known kinetic-energy discretization methods described in finite-element method (FEM) textbooks since the mid-1960s lead to diagonally lumped and consistent mass matrices, respectively. These two models are sufficient to cover many engineering applications. Occasionally, however, they fall short. The gap can be filled with a more general approach that relies on the use of templates. These are algebraic forms that carry free parameters. This approach is discussed in this paper using one-dimensional structural elements as examples. Templates have the virtue of producing a set of mass matrices that satisfy certain a priori constraint conditions such as symmetry, nonnegativity, invariance, and momentum conservation. In particular, the diagonally lumped and consistent versions can be obtained as instances. Thus those standard models are not excluded. Availability of free parameters, however, allows the mass matrix to be customized to special needs, such as high precision vibration frequencies or minimally dispersive wave propagation. An attractive feature of templates for FEM programming is that only one element implementation as module with free parameters is needed, and need not be recoded when the application problem class changes.
    • Download: (1.356Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Construction of Customized Mass-Stiffness Pairs Using Templates

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/45069
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorCarlos A. Felippa
    date accessioned2017-05-08T21:16:17Z
    date available2017-05-08T21:16:17Z
    date copyrightOctober 2006
    date issued2006
    identifier other%28asce%290893-1321%282006%2919%3A4%28241%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/45069
    description abstractThis paper is a tutorial exposition of the template approach to the construction of customized mass-stiffness pairs for selected applications in structural dynamics. The exposition focuses on adjusting the mass matrix while a separately provided stiffness matrix is kept fixed. Two well known kinetic-energy discretization methods described in finite-element method (FEM) textbooks since the mid-1960s lead to diagonally lumped and consistent mass matrices, respectively. These two models are sufficient to cover many engineering applications. Occasionally, however, they fall short. The gap can be filled with a more general approach that relies on the use of templates. These are algebraic forms that carry free parameters. This approach is discussed in this paper using one-dimensional structural elements as examples. Templates have the virtue of producing a set of mass matrices that satisfy certain a priori constraint conditions such as symmetry, nonnegativity, invariance, and momentum conservation. In particular, the diagonally lumped and consistent versions can be obtained as instances. Thus those standard models are not excluded. Availability of free parameters, however, allows the mass matrix to be customized to special needs, such as high precision vibration frequencies or minimally dispersive wave propagation. An attractive feature of templates for FEM programming is that only one element implementation as module with free parameters is needed, and need not be recoded when the application problem class changes.
    publisherAmerican Society of Civil Engineers
    titleConstruction of Customized Mass-Stiffness Pairs Using Templates
    typeJournal Paper
    journal volume19
    journal issue4
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)0893-1321(2006)19:4(241)
    treeJournal of Aerospace Engineering:;2006:;Volume ( 019 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian