YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Functionally Graded Stitched Laminates: Illustration on the Example of a Double Cantilever Beam

    Source: Journal of Aerospace Engineering:;2006:;Volume ( 019 ):;issue: 004
    Author:
    Victor Birman
    ,
    Larry W. Byrd
    DOI: 10.1061/(ASCE)0893-1321(2006)19:4(217)
    Publisher: American Society of Civil Engineers
    Abstract: Although stitched laminates have been shown effective in preventing delamination failure, the presence of stitches results in a degraded in-plane strength and stiffness in such structures. The solution suggested in the paper is based on using stitches only in a part of the structure where they serve as arrestors of delamination cracks, while the part subject to considerable in-plane loading could remain unstitched. This approach, that could be called “functionally graded stitching,” is considered on the example of a double cantilever beam (DCB) with a preexisting delamination crack that has penetrated into the stitched region of the beam. As is shown in the paper, the distribution of stitches in a functionally graded DCB (and in any other laminated structure) should be chosen to prevent three major failure modes. These modes include the failure of the stitches, bending failure of the unstitched delaminated section of the structure, and continuous crack propagation through the stitched region. The results obtained in the paper for the static problem clearly illustrate the feasibility of using functionally graded stitched laminates retaining in-plane strength and stiffness, while providing barriers to delamination cracks in less loaded regions of the structure. Additionally, the approach to the solution of the dynamic problem presented in the paper may be applied to the analysis of fatigue delamination cracks in partially stitched structures.
    • Download: (170.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Functionally Graded Stitched Laminates: Illustration on the Example of a Double Cantilever Beam

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/45067
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorVictor Birman
    contributor authorLarry W. Byrd
    date accessioned2017-05-08T21:16:17Z
    date available2017-05-08T21:16:17Z
    date copyrightOctober 2006
    date issued2006
    identifier other%28asce%290893-1321%282006%2919%3A4%28217%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/45067
    description abstractAlthough stitched laminates have been shown effective in preventing delamination failure, the presence of stitches results in a degraded in-plane strength and stiffness in such structures. The solution suggested in the paper is based on using stitches only in a part of the structure where they serve as arrestors of delamination cracks, while the part subject to considerable in-plane loading could remain unstitched. This approach, that could be called “functionally graded stitching,” is considered on the example of a double cantilever beam (DCB) with a preexisting delamination crack that has penetrated into the stitched region of the beam. As is shown in the paper, the distribution of stitches in a functionally graded DCB (and in any other laminated structure) should be chosen to prevent three major failure modes. These modes include the failure of the stitches, bending failure of the unstitched delaminated section of the structure, and continuous crack propagation through the stitched region. The results obtained in the paper for the static problem clearly illustrate the feasibility of using functionally graded stitched laminates retaining in-plane strength and stiffness, while providing barriers to delamination cracks in less loaded regions of the structure. Additionally, the approach to the solution of the dynamic problem presented in the paper may be applied to the analysis of fatigue delamination cracks in partially stitched structures.
    publisherAmerican Society of Civil Engineers
    titleFunctionally Graded Stitched Laminates: Illustration on the Example of a Double Cantilever Beam
    typeJournal Paper
    journal volume19
    journal issue4
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)0893-1321(2006)19:4(217)
    treeJournal of Aerospace Engineering:;2006:;Volume ( 019 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian