YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Probabilistic Material Degradation under High Temperature, Fatigue, and Creep

    Source: Journal of Aerospace Engineering:;1993:;Volume ( 006 ):;issue: 004
    Author:
    L. Boyce
    DOI: 10.1061/(ASCE)0893-1321(1993)6:4(347)
    Publisher: American Society of Civil Engineers
    Abstract: This paper describes the development of methodology that provides for quantification of uncertainty in the lifetime material strength degradation of structural components of aerospace propulsion systems subjected to a number of diverse random effects. The methodology is embodied in the two computer programs PROMISS and PROMISC. These programs form a material‐resistance model used in an aerospace structural‐reliability program NESSUS. A probabilistic material‐degradation model, in the form of a postulated randomized multifactor interaction equation, is used to quantify lifetime material strength. Each multiplicative term in the model has the property that if the current value of an effect equals the ultimate value, then the lifetime strength will be zero. Also, if the current value of an effect equals the reference value, the term equals one and lifetime strength is not affected by that particular effect. Presently, the model includes three effects that typically reduce lifetime strength: high temperature, mechanical fatigue, and creep. The paper also includes the statistical analysis of experimental data for INCONEL 718 obtained from the open literature. This statistical analysis of data provided regression parameters for use as the empirical material constants of the model, thus calibrating the model specifically for INCONEL 718. Model calibration was carried out for three variables, namely, high temperature, mechanical fatigue, and creep. Finally, using the PROMISS computer program, a sensitivity study was performed with the calibrated random model illustrating the effect of each variable upon random lifetime strength.
    • Download: (609.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Probabilistic Material Degradation under High Temperature, Fatigue, and Creep

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/44766
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorL. Boyce
    date accessioned2017-05-08T21:15:45Z
    date available2017-05-08T21:15:45Z
    date copyrightOctober 1993
    date issued1993
    identifier other%28asce%290893-1321%281993%296%3A4%28347%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/44766
    description abstractThis paper describes the development of methodology that provides for quantification of uncertainty in the lifetime material strength degradation of structural components of aerospace propulsion systems subjected to a number of diverse random effects. The methodology is embodied in the two computer programs PROMISS and PROMISC. These programs form a material‐resistance model used in an aerospace structural‐reliability program NESSUS. A probabilistic material‐degradation model, in the form of a postulated randomized multifactor interaction equation, is used to quantify lifetime material strength. Each multiplicative term in the model has the property that if the current value of an effect equals the ultimate value, then the lifetime strength will be zero. Also, if the current value of an effect equals the reference value, the term equals one and lifetime strength is not affected by that particular effect. Presently, the model includes three effects that typically reduce lifetime strength: high temperature, mechanical fatigue, and creep. The paper also includes the statistical analysis of experimental data for INCONEL 718 obtained from the open literature. This statistical analysis of data provided regression parameters for use as the empirical material constants of the model, thus calibrating the model specifically for INCONEL 718. Model calibration was carried out for three variables, namely, high temperature, mechanical fatigue, and creep. Finally, using the PROMISS computer program, a sensitivity study was performed with the calibrated random model illustrating the effect of each variable upon random lifetime strength.
    publisherAmerican Society of Civil Engineers
    titleProbabilistic Material Degradation under High Temperature, Fatigue, and Creep
    typeJournal Paper
    journal volume6
    journal issue4
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)0893-1321(1993)6:4(347)
    treeJournal of Aerospace Engineering:;1993:;Volume ( 006 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian